1

Podobné dokumenty
1

Microsoft Word - 16.kapitola.doc

Microsoft Word - Algoritmy a informatika-priesvitky02.doc

Microsoft Word - Argumentation_presentation.doc

Microsoft Word - Transparencies03.doc

Microsoft Word - Zaver.pisomka_januar2010.doc

Matematický model činnosti sekvenčného obvodu 7 MATEMATICKÝ MODEL ČINNOSTI SEKVENČNÉHO OBVODU Konečný automat predstavuje matematický model sekvenčnéh

Microsoft Word - 8.cvicenie.doc

Microsoft Word - Final_test_2008.doc

Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú in

Informačná a modelová podpora pre kvantifikáciu prvkov daňovej sústavy SR

1

2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom

9. kapitola Maticová algebra II systém lineárnych rovníc, Frobeniova veta, Gaussova eliminačná metóda, determinanty 1. Systém lineárnych rovníc Systém

Úvodná prednáška z RaL

8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1.2 Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru

BRKOS

Microsoft Word - skripta3b.doc

Študent 1. kapitola Maticová algebra I 1.1 Definícia matice V mnohých prípadoch dáta majú štruktúru dvojrozmernej tabuľky, ktorá má m riadkov a n stĺp

III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) Matematická analýza IV (ÚMV/MAN2d/10) RNDr. Lenka Halčinová, PhD.

O možnosti riešenia deformácie zemského povrchu z pohladu metódy konecných prvkov konference pro studenty matematiky

Klasická metóda CPM

Jazykom riadená vizuálna pozornosť - konekcionistický model Igor Farkaš Katedra aplikovanej informatiky / Centrum pre kognitívnu vedu Fakulta matemati

Neineárne programovanie zimný semester 2018/19 M. Trnovská, KAMŠ, FMFI UK 1

Teória pravdepodobnosti Zákony velkých císel

Pokrocilé programovanie XI - Diagonalizácia matíc

DIDKATICKÉ POSTUPY UČITEĽA

9.1 MOMENTY ZOTRVACNOSTI \(KVADRATICKÉ MOMENTY\) A DEVIACNÝ MOMENT PRIEREZU

4. Pravidlo ret azenia. Často sa stretávame so skupinami premenných, ktoré zložitým spôsobom závisia od iných skupín premenných. Pravidlo ret azenia p

Vzorové riešenia úlohy 4.1 Bodovanie Úvod do TI 2010 Dôvod prečo veľa z Vás malo málo bodov bolo to, že ste sa nepokúsili svoje tvrdenia dokázať, prič

Prezentácia programu PowerPoint

Matematika 2 - cast: Funkcia viac premenných

1. KOMPLEXNÉ ČÍSLA 1. Nájdite výsledok operácie v tvare x+yi, kde x, y R. a i (5 2i)(4 i) b. i(1 + i)(1 i)(1 + 2i)(1 2i) (1 7i) c. (2+3i) a+bi d

KUZ_2015

Zeszyty Naukowe PWSZ, Nowy Sącz 2013 Konštrukcie magických obdĺžnikov Marián Trenkler Faculty of Education, Catholic University in Ružomberok Hrabovsk

Snímka 1

MO_pred1

Axióma výberu

Prenosový kanál a jeho kapacita

Úvod do lineárnej algebry Monika Molnárová Prednášky 2006

Dobývanie znalostí

Poznámky k cvičeniu č. 2

Metrické konštrukcie elipsy Soňa Kudličková, Alžbeta Mackovová Elipsu, ako regulárnu kužeľosečku, môžeme študovať synteticky (konštrukcie bodov elipsy

Paralelné algoritmy, cast c. 2

Microsoft Word - 6 Výrazy a vzorce.doc

Informačné technológie

Údajový list Vyvažovacie guľové ventily JIP BaBV (PN25) Popis BaBV WW BaBV FF Vyvažovacie guľové ventily Danfoss BaBV boli špecificky vyvinuté pre apl

Sila [N] Sila [N] DIPLOMOVÁ PRÁCA Príloha A: Sila v ose skrutky v mieste predpätia P = 0,

Inteligentné rozhodovacie systémy Heuristické prehľadávanie SP Október, 2018 Katedra kybernetiky

Snímka 1

SocialInsects

Úlohy: Inteligentné modelovanie a riadenie model MR mobilný robot s diferenciálnym kolesovým podvozkom 1. Vytvorte simulačnú schému pre snímanie tréno

iot business hub whitepaper isdd_em_New.pdf

Národné centrum popularizácie vedy a techniky v spoločnosti

Hospodarska_informatika_2015_2016a

SK01-KA O1 Analýza potrieb Zhrnutie BCIME tím Vyhlásenie: "Podpora Európskej komisie pre výrobu tejto publikácie nepredstavuje súhlas

Operačná analýza 2

O babirusách

Paralelné algoritmy, cast c. 3

ADSS2_01

Čo sú pojmové mapy 1 Charakterizácia pojmových máp pojmové mapy sú diagramy, ktoré vyjadrujú podstatné vzťahy medzi pojmami vo forme tvrdení. Tvrdenia

Zásady akreditačnej komisie na posudzovanie spôsobilosti fakúlt uskutočňovať habilitačné konanie a konanie na vymenovanie profesorov

Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV

Hranoly (11 hodín) September - 17 hodín Opakovanie - 8. ročník (6 hodín) Mesiac Matematika 9. ročník 5 hodín/týždeň 165 hodín/rok Tematický celok Poče

Data sheet

Slide 1

Cvičenie 9 Riešené príklady 1. Príklad min f(x 1, x 2 ) = x x x 1 s.t. x 1 80 x 1 + x Pre riešenie úlohy vykonáme nasledujúce kroky

Tue Oct 3 22:05:51 CEST Začiatky s jazykom C 2.1 Štruktúra programu Štruktúra programu by sa dala jednoducho popísať nasledovnými časťami, kto

Platný od: OPIS ŠTUDIJNÉHO ODBORU

1 Portál pre odborné publikovanie ISSN Heuristický adaptívny PSD regulátor založený na miere kmitavosti Šlezárová Alexandra Elektrotechnika

MATERIALIZOVANÉ DĹŽKOVÉ MIERY 1. Vymedzenie meradiel a spôsob ich metrologickej kontroly 1.1 Táto príloha upravuje materializovanú dĺžkovú mieru (ďale

Študijný program (Študijný odbor) Školiteľ Forma štúdia Téma Elektronické zbraňové systémy (8.4.3 Výzbroj a technika ozbrojených síl) doc. Ing. Martin

Platný od: OPIS ŠTUDIJNÉHO ODBORU FILOZOFIA

trafo

Krátky popis k Solárnemu ohrievaciemu systému Solar Fox Air Collector Všeobecný popis: Solar Fox Air ohrievací systém je systém ktorý sa vyrába pod zn

Microsoft PowerPoint - OOP_prednaska_10.pptx

Obsah 1 Úvod Predhovor Sylaby a literatúra Základné označenia

Cvičenie I. Úvodné informácie, Ekonómia, Vedecký prístup

Vyhodnotenie študentských ankét 2013

Microsoft Word - Priloha_1.docx

Externé mediálne karty Používateľská príručka

Relačné a logické bázy dát

Microsoft PowerPoint - Prog_p08.ppt

PM C-03 Prostredie riadenia ¾udských zdrojov

test z informatiky - hardvér Test vytvoril Stanislav Horváth Vstupno - výstupné zariadenia Otázka č.1: Aké zariadenie je na obrázku? (1 bod) a) vstupn

Obsah 1 Úvod Predhovor Sylaby a literatúra Základné označenia

Snímka 1

Príklad 5 - Benzén 3. Bilančná schéma 1. Zadanie príkladu n 1 = kmol/h Definovaný základ výpočtu. Na základe informácií zo zadania si ho bude v

SRPkapitola06_v1.docx

Operačná analýza 2

Snímka 1

EVOLUČNÁ ROBOTIKA

Snímka 1

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 Jednotkový koreň(unit roo

Preco kocka stací? - o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, ked sú velké

VZTAH STUDENTŮ VŠ K DISCIPLÍNÁM TEORETICKÉ INFORMATIKY

NÁVRH UČEBNÝCH OSNOV PRE 1

Univerzita P. J. Šafárika v Košiciach FILOZOFICKÁ FAKULTA PRIJÍMACIE KONANIE NA AKADEMICKÝ ROK 2019/2020 (magisterský stupeň) Akreditované jednoodboro

Prepis:

ADM a logika. prednáška Logické neuróny a neurónové siete Priesvitka

Logické neuróny McCullocha a Pittsa Logické neuróny a neurónové siete boli prvý krát študované v publikácii Warrena McCullocha a Waltera Pittsa A logical calculus of the ideas immanent to nervous activity" z r. 943, ktorá je medzníkom v rozvoji metafory konekcionizmuv umelej inteligencii a kognitívnej vedy. V tejto práci bolo s geniálnou jasnozrivosťou ukázané, že neurónové siete sú efektívnym výpočtovým prostriedkom v doméne Boolových funkcií, t. j. ľubovolná Boolova funkcia je simulovaná pomocou neurónovej sieti obsahujúcej logické neuróny. Hneď úvodom je potrebné konštatovať, že táto práca McCullocha a Pittsa je veľmi ťažko čitateľná, matematicko-logická časť práce zrejme bola písaná Walterom Pittsom, ktorý bol tak v logike ako aj v matematika autodidaktom. Až zásluhou amerických vedcov, logika S. C. Kleeneho a informatika N. Minskeho, táto významná práca bola preložená v druhej polovici 50. rokov minulého storočia do štandardného jazyka súčasnej logiky a matematiky, Priesvitka 2

čím sa stali myšlienky v nej obsiahnuté všeobecne prístupnými a akceptovanými. Warren McCulloch (889-969 ) a Walter Pitts (923-969) Priesvitka 3

Elementárnou jednotkou neurónových sietí je logický neurón McCullocha a Pittsa (výpočtová jednotka), pričom stav neurónu je binárny (t. j. má dva stavy, alebo 0). Takýto logický neurón možno interpretovať ako jednoduché elektrické zariadenie - relé. Predpokladajme, že dendritický systém logického neurónu obsahuje tak excitačné vstupy (opísané binárnymi premennými x, x 2,..., x n, ktoré zosilňujú odozvu), ako aj inhibičné vstupy (opísané binárnymi premennými x n+, x n+2,..., x m, ktoré zoslabujú odozvu) Priesvitka 4

exitačné vstupy soma neurónu x x n x n+ x m y axón - výstup dendritický vstupn ý systém inhibičné vstupy Aktivita logického neurónu je jednotková, ak vnútorný potenciál neurónu definovaný ako rozdiel medzi sumou excitačných vstupných aktivít a inhibičných vstupných aktivít je väčší alebo rovný prahu, v opačnom prípade je nulová x... xn x n... xm y 0 x... xn x n... xm Pomocou jednoduchej krokovej funkcie Priesvitka 5

pre 0 s 0 pre 0 môžeme aktivitu y vyjadriť takto: y sx... xn x n... x m Tento vzťah pre aktivitu logického neurónu môžeme alternatívne interpretovať tak, že excitačné aktivity vstupujú do neurónu cez spoje, ktoré sú ohodnotené jednotkovým váhovým koeficientom (w = ), zatiaľ čo inhibičné aktivity vstupujú do neurónu cez spoje so záporným jednotkovým váhovým koeficientom (w = -). Potom aktivitu logického neurónu môžeme vyjadriť takto Priesvitka 6

m y swx... wm xm s wi xi i Kde váhové koeficienty w ij sú definované takto spoj j i má exitačný charakter wij spoj j i má inhibičný charakter 0 spoj j i neexistuje V neurónovej sieti váhové koeficienty sú fixne a sú určené topológiou syntaktického stromu špecifikujúceho Boolovu funkciu. Priesvitka 7

E. D. Adrian ( 889 977) Britský elektrofyziológ, laureát Nobelovej ceny za fyziológiu. Formuloval experimentálne evidentnosti pre neurovedný zákon všetko alebo nič, ktorý špecifikuje aktivitu neurónov ľudského mozgu. Culoch a Pitts poznali experimentálne práce Adriana o správaní neurónu all or none, táto vlastnosť má centrálne postavenie v ich prístupe. Priesvitka 8

...... Implementácia elementárnych Boolovych funkcií x x y y y n 0 x n x 2 x n x x 0 y Boolova funkcia disjunkcie Boolova funkcia konjunkcie Boolova funkcia implikácie y = x... x n y = x... x n y = x x 2 Boolova funkcia negácie y = x Štyri realizácie logických neurónov na implementáciu Boolových funkcií disjunkcií, konjunkcií a negácie. Excitačné spoje sú znázornené plným krúžkom, inhibičné prázdnym krúžkom. Priesvitka 9

Ako príklad uvedenie formulu pre aktivitu logického neurónu, ktorý špecifikuje disjunkciu yor x,x2 sx x2 Funkčné hodnoty tejto Boolovej funkcie sú ukázané v tabuľke Binárna Boolova funkcia disjunkcie # x x 2 y OR (x,x 2 ) x x 2 0 0 s(-) 0 2 0 s(0) 3 0 s(0) 4 s() Z tabuľky vyplýva, že Boolova funkcia y OR simuluje Boolovu funkciu disjunkcie. Podobným spôsobom môžeme verifikovať ak ostatné elementárne boolove funkcie yand x,x2 sx x2 2 yimp x,x2 sx x2 y x s x NEG Priesvitka 0

Neurónové siete Každá Boolova funkcia je reprezentovaná pomocou syntaktického stromu, ktrorý reprezentuje jej rekurentnú výstavbu (zdola nahor) inicializovanú Boolovými premennými a končiacu danou Boolovou funkciou (funkciou výrokovej logiky) 0 0 2 p q p q p q p syntaktický strom A neurónová sieť Neurónová sieť obsahujúca logické neuróny spojok, ktoré sa vyskytujú v príslušnom syntaktickom strome. Vidíme, že medzi syntaktickým stromom a príslušnou neurónovou sieťou existuje veľmi tesná previazanosť, ich topológia je identická, odlišujú sa len vo vrcholoch. Obrazne môžeme povedať, že neurónovú sieť pre Boolovu funkciu zostrojíme pomocou jej syntaktického stromu tak, že vrcholy zo syntaktického stromu, ktoré reprezentujú logické spojky, nahradíme príslušnými logickými neurónmi, koreň syntaktického stromu je zamenený. B q Priesvitka

Veta. Každá Boolova funkcia môže byť vyjadrená pomocou neurónovej siete zloženej z logických neurónov vyjadrujúcich logické spojky. Použitie techniky váhových koeficientov umožňuje formálne zjednodušiť teóriu logických neurónov, potom nie je potrebné a-priori odlišovať excitačné a inhibičné vstupy do neurónu xi t wijx j i j kde sumácia prebieha nad všetkými neurónmi, ktoré v neurónovej sieti predchádzajú i-ty neurón. Váhové koeficienty w ij sú definované takto spoj j i má exitačný charakter wij spoj j i má inhibičný charakter 0 spoj j i neexistuje To znamená, že v neurónovej sieti váhové koeficienty sú fixné a sú určené topológiou syntaktického stromu špecifikujúceho Boolovu funkciu. Priesvitka 2

3-vrstvová neurónová sieť Architektúra neurónovej siete, ktorá je zostrojená pre danú Boolovu funkciu môže byť podstatne zjednodušená na tzv. 3-vrstvovú neurónovú sieť, t. j. obsahuje vrstvu vstupných neurónov (ktoré len kopírujú vstupné aktivity, nie sú výpočtovými jednotkami), vrstva skrytých neurónov a posledná vrstva obsahujúca výstupný neurón. Logický neurón, ktorý simuluje konjunktívnu klauzulu, ktorá obsahuje konjunkciu konečného prvku výrokových premenných alebo ich negácií, y x... x x... x. n n m Priesvitka 3

Táto Boolova funkcia sa rovná len pre x... x n a x n... x m 0, vo všetkých ostatných pravdivostných kombináciách argumentov jej hodnota je 0 (nepravdivý výrok) pre 0 val x... xn x n... xm 0 pre 0 kde 0 x,...,x n,x n 0,...,xm 0 je špecifikácia pravdivostných hodnôt premenných. Ľahko sa presvedčíme o tom, že táto klauzula je simulovaná logickým neurónom znázorneným na obrázku, jeho výstupná aktivita je určená formulou y sx... xn x n... xm n Funkčná hodnota tejto funkcie sa rovná vtedy, ak x... x x... x n n n m Priesvitka 4

... McCulloch a Pitts taktiež ukázali, že všeobecná neurónová sieť, ktorá je pšecifikovaná syntaktickým stromom, môže byť zjednodušená na 3-vrstvovú neurónovú sieť, ktorá je priradená ekvivalentnou DNF funkciou DNF val x x... x 2 Kde uvažujeme len členy s jednotkovou funkčnou hodnotou ë n skryté neuróny vstupné neuróny vstupný neurón kde skryté neuróny sú priradené konjunktívnzm klauzulám s jednotkovou funkčnou hodnotou. Priesvitka 5

Príklad Boolova funkcia je yadaná tabuľkou # x x 2 x 3 y f x,x,x 2 3 klauzula 0 0 0 0-2 0 0 0-3 0 0 x x2 x3 4 0 x x2 x3 5 0 0 0-6 0 x x2 x3 7 0 0-8 0 - Potom Boolova funkcia má tento DNF tvar y f x,x,x x x x x x x x x x 2 3 2 3 2 3 2 3 Priesvitka 6

Táto Boolova funkcia môže byť zjednodušená tak, že prvá a druhá klauzula sa zjednodušia x x x x x x x x x x x x Potom 2 3 2 3 2 3 3 2 y f x,x,x x x x x x opt 2 3 2 2 3 x x x 2 2 y x 2 2 y x 3 2 štandardná neurónová sieť x 3 optimálna neurónová sieť Priesvitka 7

Všeobecný tvar 3-vrstvovej neurónovej siete skryté neuróny vstupné neuróny vstupný neurón... 3-vrstvové neurónové siete obsahujúce logické neuróny sú univerzálne výpočtové zariadenia pre doménu Boolových funkcií. Tento výsledok predznačil moderný výsledok neurónových sietí z prelomu 80. a 90. rokov minulého storočia, podľa ktorého trojvrstvové dopredné neurónové siete so spojitou aktivačnou funkciou majú vlastnosť univerzálneho aproximátora Veta. Ľubovoľná Boolova funkcia f je simulovaná pomocou 3-vrstvovej neurónovej siete. Priesvitka 8

Môžeme si položiť otázku, aké Boolove funkcie je schopný vyjadriť jeden logický neurón? Výpočtová funkcia logického neurónu rozdeľuje priestor vstupov na dva polpriestory pomocou roviny w x + w 2 x 2 +...+ w n x n = pre koeficienty w i =0,. Hovoríme, že Boolova funkcia f(x, x 2,..., x n ) je lineárne separovateľná, ak existuje taká rovina w x + w 2 x 2 +...+ w n x n = ktorá separuje priestor vstupných aktivít tak, že v jednej časti priestoru sú vrcholy ohodnotené 0, zatiaľ čo v druhej časti priestoru sú vrcholy ohodnotené x 2 objekty ohodnotené objekty ohodnotené 0 nadrovina x Priesvitka 9

Veta 8.3. Logický neurón je schopný simulovať Boolove funkcie, ktoré sú lineárne separovateľné. Klasický príklad Boolovej funkcie, ktorá nie je lineárne separovateľná, je výroková spojka exkluzívna disjunkcia (XOR), ktorá je formálne definovaná ako negácia ekvivalencie x y x y, potom XOR x,y x y. # x y XOR (x,y) 0 0 0 2 0 3 0 4 0 0 x 2 0 x Ak si jej funkčné hodnoty vynesieme do stavového priestoru x - y dostaneme diagram, z ktorého jasne vyplýva, že táto funkcia nie je lineárne separovateľná. Priesvitka 20

Zostrojíme neurónovú sieť, ktorá simuluje túto elementárnu lineárne neseparovateľnú funkciu XOR v tvare DNF # x y XOR (x,y) 0 0 0 2 0 3 0 4 0 x x x x 2 2 x x x y (0) y (0) x 2 A x 2 B Diagram C reprezentuje 3-vrstvovú neurónovú sieť, ktorá ako skryté neuróny obsahuje neuróny z diagramu A a B, výstupný neurón reprezentuje disjunkciu výstupných aktivít zo skrytých neurónov. x 2 C y XOR Priesvitka 2

Príklad Zostrojme neurónovú sieť, ktorá simuluje sčítanie dvoch binárnych číslic (nazývana polosumátor semi adder) 2 2 kde jednotlivé binárne premenné výsledku sumy sú určené takto: 2 2 2 2 2 Príslušná neurónová sieť je znázornená na obrázku 8.0. Priesvitka 22

Príklad polosumátora môžeme ľahko zovšeobecniť na plný sumátor (full adder) 2 2 Ktorý je špecifikovaný tabuľkou # 2 3 2 0 0 0 0 0 2 0 0 0 3 0 0 0 4 0 0 5 0 0 0 6 0 0 7 0 0 8 2 3 2 3 2 3 2 3 2 2 3 2 3 2 3 2 3 3 Priesvitka 23

3-vrstvová neurónová sieť pre plný sumátor 2 3 2 2 3 Priesvitka 24

Logický neurón vyššieho rádu Logické neuróny sú schopné korektne klasifikovať len lineárne separovateľné Boolove funkcie. Toto podstatné obmedzenie logických neurónov môže byť odstránené pomocou logických neurónov vyšších rádov, ktorých aktivita je určená yahrnutím členov vyšších rádov n n y swi xi wijxix j... i i,j i j Ak potenciál neurónu obsahuje aj kvadratické a prípadne aj ďalšie členy, potom sa nazýva "logický neurón vyššieho rádu". Podľa Minského a Paperta platí nasledujúca veta, ktorá hovorí o tom, že perceptróny vyššieho rádu sú schopné simulovať aj množiny objektov, ktoré nie sú lineárne separovateľné. Veta. Ľubovolná Boolova funkcia f je simulovaná logickým neurónom vyššieho rádu. Priesvitka 25

Príklad Ako ilustračný príklad vety študujme Boolovu funkciu XOR, ktorá nie je lineárne separovateľná a ktorej funkčné hodnoty sú uvedené v tabuľke 4.. Nech aktivita logického neurónu je určená pomocou kvadratického potenciálu (čiže sa jedná o logicky neurón druhého rádu) y sw x w2 x2 w2 xx 2 Pre jednotlivé riadky tabuľky 2.3 funkcie XOR platí 0 w w 2 w w2 w2 0 Postupným riešením týchto nerovníc dostaneme, že váhové koeficienty a prah majú napr. takéto riešenie, w w, w 2 (8.7) 2 2 0 0 Priesvitka 26

x x x 2 xx 2 y= x x 2 x 2 2 xx 2 y= x x 2 A B Znázornenie logického neurónu druhého rádu simulujúceho funkciu XOR, kde excitačné vstupné aktivity sú binárne premenné x a x 2, inhibičná aktivita je priradená premennej druhého rádu x x 2. Výstupná aktivita z je určená pomocou krokovej funkcie, z sx x2 2x x2, priamou verifikáciou sa presvedčíme, že simuluje funkciu XOR. Priesvitka 27

Pojem lineárnej separovateľnosti Boolových funkcií je ľahko zovšeobecniteľný na kvadratickú (kubickú, ) separovateľnosť pomocou kvadratickej (kubickej, ) nadplochy. Definícia. Boolova funkcia f sa nazýva kvadraticky separovateľná, ak existujú také váhové koeficienty w i, w ij a prahový faktor že pre každú špecifikáciu premenných x,x,...,x platí 2 n y x,x,...,x w x w x x req 2 n i i ij i j i i, j i j y x,x,...,x 0 w x w x x req 2 n i i ij i j i i, j i j n n n n Priesvitka 28

Konštrukcia binárnych obvodov Logické neuróny môžu byť použité na konštrukciu jednoduchých binárnych obvodov [4,7], ich kombináciou môžeme zostrojiť už zložité zariadenia, akými sú napr. rôzne sčítačky, násobičky a podobne. Časový posunovač Časový posunovač je taký binárny obvod, ktorý posunie tok signálu o niekoľko vopred zvolených jednotiek. Študujme jednoduchý obvod t= t=2 t=3 x y x y x y A B ktorý realizuje posun o predpísaný počet jednotiek. C Priesvitka 29

Aktivitu neurónu v čase t môžeme vyjadriť takto t t y t x Vstupný signál v čase t sa transformuje na výstupný signál v čase t+ t t t t x 0 y t 0, x y t 0 Vstupná a výstupná sekvencia pre jednotkový časový posunovač čas 2 3 4 5 6 7 8 9 0 7 7 vstup x 0 0 0 0 0.... výstup y # 0 0 0 0 0.. Sériovým zapojením jednotkových posunovačov dostaneme posunovače o dve, tri,.. časové jednotky, pozri diagramy B a C. Priesvitka 30

Riadený prepínač Riadený prepínač pomocou riadiaceho signálu zapína alebo vypína tok signálu. Tak ak v excitačnom riadenom prepínači je riadiaci signál jednotkový, potom prepínač prepúšťa signál na výstup prepínača. V alternatívnom prípade, pre inhibične riadený prepínač, nulový riadiaci signál spôsobuje prenos signálu na výstup. Tieto dva prepínače sú znázornené na obr. 8.9. Excitačný riadený prepínač Inhibičný riadený prepínač x 2 y x y x 2 2 y 2 x 2 y 2 x 3 2 y 3 x 3 y 3 riadiaci signál riadiaci signál Kombináciou excitačného a inhibičného prepínača zostrojíme riadené rozdvojovacie zariadenie. Priesvitka 3

Neurónová sieť riadeného rozdvojovacieho zariadenia x y 2 y 2 y 3 výstup vstup x 2 2 x 3 y y 2 výstup 2 y 3 riadiaci signál Ak riadiaci signál je jednotkový (nulový), potom vstup je riadený na. výstup (2.výstup). Obrazne môžeme povedať, že riadiaci signál pôsobí ako prepínač do. alebo 2. polohy. Priesvitka 32

Binárny paralelný dekodér Budeme študovať paraleny dekodér pre tri binárne číslice. Predpokladáme, že informácia do dekodéra prichádza prostredníctvom impulzov cez tri paralelne vlákna, pozri obr. 8.2. Dekóder obsahuje osem nezávislých elementov neurónov, z ktorých každý dekóduje jednu možnú binárnu kombináciu prichádzajúcich signálov. vstupný signál 0 0 2 2 2 3 0 0 0 0 0 0 0 000 00 00 0 00 0 00 Priesvitka 33

Všeobecná diskusia k neurónovým sieťam Neurónové siete zložené z logických neurónov sú univerzálnym aproximátorom Boolových funkcií (t. j. každá Boolova funkcia môže byť ňou reprezentovaná). Podstatným ohraničením logických neurónov je, že klasifikujú len Boolove funkcie, ktoré sú lineárne separovateľné. Bolo ukázané práve McCullochom a Pittsom, že toto ohraničenie logického neurónu je prekonané neurónovými sieťami. Druhá alternatívna možnosť, ako prekonať toto ohraničenie lineárnej separovateľnosti, sú logické neuróny vyššieho rádu, ktoré navrhli Minski a Pappert. Tieto vlastnosti logického neurónu môžeme sumarizovať tak, že tieto sú univerzálnym výpočtovým zariadením v doméne Boolových fikcií. Priesvitka 34

Ďalší, nemenej zaujímavý aspekt neurónových sietí obsahujúcich logické neuróny je skutočnosť, že poskytujú informatický a výpočtový pohľad na vzťah medzi mysľou a mozgom (známy filozofický problém myseľ telo" alebo "duša telo" problém, ktorý vo filozofii patrí medzi centrálne problémy). Práve, moderná neuroveda, prostredníctvom neurónových sietí (v najjednoduchšom priblížení vyjadrených pomocou logických neurónov) ponúka vedecké riešenie tohto problému. Neurovedný pohľad umelej inteligencie a kognitívnej vedy na komplex mozogmyseľ je založený na predpoklade, že mozog je mohutný paralelný počítač, ktorý transformuje vstupné údaje x (produkované zrakom, sluchom, čuchom a pod.) na motorické impulzy y (pričom táto transformácia je závislá od vnútorného stavu s (pozri diagram A ). Táto neurovedná interpretácia mozgu na mikroskopickej (neurálnej) úrovni neumožňuje priame štúdium vyšších kognitívnych aktivít (riešenie problémov, porozumenie ľudskej reči, a pod.). Priesvitka 35

Neurálny prístup je vhodný na štúdium elementárnych kognitívnych aktivít (napr. prvotné spracovanie vizuálnej informácie zo sietnice oka). Vyššie kognitívne aktivity mozgu sú študované na symbolickej úrovni, založeného na predstave, že ľudský mozog je počítač, ktorý pracuje podľa týchto princípov (ktoré tvoria základ tzv. symbolickej paradigmy), ktorý () transformuje symboly pomocou syntaktických pravidiel na iné symboly, pričom (2) myšlienky sú symbolické reprezentácie implementované pomocou jazyka myslenia, a (3) mentálne procesy sú kauzálne sekvencie symbolov generované syntaktickými pravidlami. Priesvitka 36

s x y x x x 2 s s 2 s 3 y s 4 y 2 y A x a vstupné neuróny skry té ne uróny vý stupné neuróny B (A) Kybernetická interpretácia mozgu ako zariadenia, ktoré transformuje vstup x na výstup y, pričom táto transformácia je ovplyvnená vnútorným stavom s. Touto špecifikáciou mozgu môžeme dostať dve rôzne odozvy y a y 2 na rovnaký vstup x. (B) Konekcionistický (neurálny) model mozgu pomocou neurónovej siete, ktorá obsahuje () vstupné neuróny (napr. percepčné neuróny retiny oka), (2) skryté neuróny, na ktorých prebieha transformácia vstupu na výstup a (3) výstupné neuróny (napr. neuróny riadiace motorické aktivity). Aktivity skrytých neurónov tvoria vnútorný stav neurónovej siete, rôzne počiatočné nastavenie týchto aktivít zapríčiňuje rôznu odozvu na rovnaké vstupné aktivity x. y b Priesvitka 37

Použitie termínu počítač obvykle evokuje predstavu sekvenčného počítača von neumannovskej architektúry (napr. personálne počítače majú túto architektúru), kde je možné striktne oddeliť hardware od software; kde na tom istom počítači hardware môže byť vykonávaných nepreberné množstvo rozdielnych programov softwarov. Pre tieto von neumannovské počítače existuje striktná dichotómia medzi počítačom a programom t. j. medzi hardwarom a softwarom. Žiaľ, paradigma mysle ako počítača implikuje u mnohých ľudí predstavu, že je možné oddeliť mozog od mysle, ako dva nezávislé fenomény, kde mozog hrá úlohu hardwaru, zatiaľ čo myseľ je software (vykonávaný na hardwaru mozgu). Mozog môže byť chápaný ako mohutný paralelný počítač, ktorého výpočtové jednotky sú neuróny s extrémne jednoduchou výpočtovou prahovou aktivitou (verbálne vyjadrenou vetou - víťaz berie všetko). Možno konštatovať, že schopnosť mozgu vykonávať nielen kognitívne aktivity, ale byť aj pamäťou, je plne zakódovaná do jeho architektúry. Priesvitka 38

Na základe týchto neurovedných poznatkov bazálneho charakteru môžeme konštatovať, že počítačová paradigma ľudského mozgu sa musí formulovať tak, že mozog je paralelne distribuovaný počítač (obsahujúci obrovské množstvo neurónov, elementárnych procesorov, ktoré sú medzi sebou poprepájané do zložitej neurónovej siete). Program v tomto paralelnom počítači je priamo zabudovaný do architektúry neurónovej siete, t. j. ľudský mozog je jednoúčelový paralelný počítač reprezentovaný neurónovou sieťou, ktorý nie je možné preprogramovať bez zmeny jeho architektúry. Z týchto všeobecných úvah vyplýva, že myseľ s mozgom tvoria jeden integrálny celok; myseľ v tomto prístupe sa chápe ako program vykonávaný mozgom, avšak tento program je špecifikovaný architektúrou distribuovanej neurónovej siete reprezentujúcej mozog. Priesvitka 39

Mozog a myseľ tvoria dva rôzne pohľady na ten istý objektu: () Keď hovoríme o mozgu, myslíme tým hardwarovú štruktúru, biologicky realizovanú neurónmi a ich synaptickými spojmi (formálne reprezentovanú neurónovou sieťou), v opačnom prípade, (2) keď hovoríme o mysli, myslíme tým kognitívne a iné aktivity mozgu, realizované výpočtami neurónovej siete reprezentujúcej mozog. Na záver tejto kapitoly poznamenajme, že logické neuróny McCullocha a Pittsa majú v informatike, umelej inteligencii a kognitívnej vede mimoriadne postavenie, sú nielen univerzálnym aproximátorom v doméne Boolovych funkcií (umožňujú realizovať jednoduchú syntézu elektronických zariadení pre realizáciu štandardných binárnych operácií, ktoré sa opakované mnohokrát vyskytujú pri návrhu počítačov, čoho si prvý všimol von Neumann), ale majú význam až "filozofický", tvoria prirodzenú teóriu pre interpretáciu mozgu ako paralelného výpočtového zariadenia a riešenia problému vzťahu medzi mysľou a mozgom. Priesvitka 40

The End Priesvitka 4