Klasická metóda CPM

Veľkosť: px
Začať zobrazovať zo stránky:

Download "Klasická metóda CPM"

Prepis

1 Operačná analýza 2-02a

2 Klasická metóda CPM

3 Úvod Je daná úloha časového plánovania U s množinou elementárnych činností E a reálnou funkciou c: E R ktorá každej činnosti A E priradí jej dobu trvania c(a). V klasickej metóde CPM modelujeme tzv. sieťový digraf v ktorom Každej činnosti A priradíme hranu s ohodnotením c(a) =y ij kde i je vrchol predstavujúci časové začiatky a j časové konce činnosti A.

4 Sieťový digraf je neorientovane súvislý acyklický digraf s jedným prameňom (začiatok projektu) a s jedným ústím (koniec projektu) s monotónnym očíslovaním vrcholov.

5 Definujeme: t jz - najskôr možný začiatok činností vychádzajúcich z vrcholu j: z z t max z t j ti yij. 0 0 a pre j=1, 2,...n, i O t j k najneskôr možný koniec činnosti vchádzajúcich do vrcholu j: j k z t t a pre j=n-1, n-2,..1, t n n k j min i O j k t y. i ji CR i = t i k t i z - časová rezerva vo vrchole i. CR ij = t jk -(t iz +y ij ) - časová rezerva na hrane (i,j).

6 T k z t n tn doba trvania projektu. Ak CR ij = 0, činnosť (i, j) sa nazýva kritická Dráha zo zdroja do ústia ( z vrcholu 1 do n), v ktorej CR ij = 0 sa nazýva kritická dráha.

7 Grafické znázornenie (CR ij )

8 Príklad Riešte úlohu časového plánovania klasickou metódou CPM, ak je dané:

9 činnosti začiatok koniec doba trvania A - B,E,F 10 B A C,K 4 C B H 16 D E, K H 14 E A D, L 8 F A G,I 5 G F,L H 11 H C, D, G - 6 I F, L J 10 J I - 5 K B D, L 3 L E, K G, I 2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 Hamiltonovské grafy

30 Definícia: Hamiltonovská cesta (kružnica) v grafe G je cesta (kružnica) ktorá obsahuje všetky vrcholy grafu G. Hamiltonovský graf je graf, ktorý obsahuje hamiltonovskú kružnicu

31 Sir Wiliam Rowan Hamilton ( ) Úloha: Nájsť hamiltonovskú kružnicu v pravidelnom dvanásťstene (20 vrcholov)

32

33

34

35

36 Úloha obchodného cestujúceho TSP (Traveling Salesman Problem) 1934 Whitney 1980 problém 318 miest možností Definícia: Je daný hranovo ohodnotený graf G=(V, E,o). Úloha obchodného cestujúceho je úloha nájsť v grafe G Hamiltonovskú kružnicu, alebo sled obsahujúci všetky vrcholy grafu G ktorej ohodnotenie je najmenšie (tzv. najkratšia HK).

37 Poznámka (Nehamiltonovské grafy)

38 1.

39 Postačujúce podmienky existencie Hamiltonovskej kružnice

40 Veta: (Ore 1960) Nech G= (V, E) je graf. Nech V n 3. Nech pre každú dvojicu vrcholov u, v platí: st u st v n potom G je Hamiltonovský.

41 Veta (Dirac 1952) Nech G= (V, E) je graf. Nech V n 3 a nech st v n 2 v V potom G je Hamiltonovský.

42 Veta: Nech G=(V,E) je hamiltonovský graf. Nech S je neprázdna podmnožina množiny V. Nech c(g-s) je počet komponentov grafu G-S, potom c G S S

43 Definícia: Nech > 1je reálne číslo. Potom hamiltonovská kružnica Z v garafe G sa nazve aproximáciou ak o o Z * Z kde Z * je najkratšia Hamiltonovská kružnica.

44 Heuristické algoritmy Metóda zdvojenia kostry (Kim 1975) Vstup Úplný ohodnotený graf, spĺňajúci trojuholníkovú nerovnosť Výstup Hamiltonovská kružnica

45 1. v grafe G nájdeme najlacnejšiu kostru T. 2. Zvolíme ľubovolný vrchol v * V a nájdeme uzavretý sled S z v * ktorý obsahuje každú hranu grafu T (napr. Tary..) 3. Hamiltonovskú kružnicu Z dostaneme zo sledu S nasledovne: Prechádzame sledom S a kedykoľvek by sme mali ísť prejdeným vrcholom, druhý krát, príslušný úsek sledu u-v nahradíme hranou [u,v].

46 Veta: Metóda zdvojenia kostry dáva Hamiltonovskú kružnicu Z, pre ktorú: o Z 2 * o Z kde o(z * ) je najkratšia Hamiltonovská kružnica..

47 Príklad 1: Riešte úlohu obchodného cestujúceho metódou zdvojenia kostry pre graf daný diagramom

48

49 1. nájdeme najlacnejšiu kostru T

50 2.- Nájdeme uzavretý sled S ktorý obsahuje každú hranu grafu T.

51 Christofidesov algoritmus (Nicos Christofides, 1976) Vstup Kompletný ohodnotený graf, spĺňajúci trojuholníkovú nerovnosť Výstup hamiltonovská kružnica

52 1. V grafe G=(V,E) nájdeme najlacnejšiu kostru T. 2. Nech W je množina vrcholov nepárneho stupňa v kostre T. Nech X je najlacnejšie úplné párenie v grafe generovanom vrcholmi množiny W. 3. Zostrojíme graf G E =(V,E E ), kde E E je zjednotenie (ak sa hrana vyskytne v T a X nahradíme ju multihranou) množiny hrán kostry T a párenia X (tento graf je Eulerovský). 4. V grafe G E zostrojíme Eulerovský ťah S. 5. Hamiltonovskú kružnicu Z dostaneme zo sledu S nasledovne: Prechádzame sledom S a kedykoľvek by sme mali ísť prejdeným vrcholom, druhý krát, príslušný úsek sledu u-v nahradíme hranou [u,v].

53 Veta: Christofidesov algoritmus určuje Hamiltonovskú kružnicu Z, pre ktorú: o Z 3 * o Z 2 kde o(z * ) je najkratšia Hamiltonovská kružnica.

54

Microsoft Word - Transparencies03.doc

Microsoft Word - Transparencies03.doc 3. prednáška Teória množín II relácie o operácie nad reláciami o rovnosť o usporiadanosť funkcie o zložená funkcia o inverzná funkcia. Verzia: 20. 3. 2006 Priesvitka: 1 Relácie Definícia. Nech X a Y sú

Podrobnejšie

Microsoft Word - skripta3b.doc

Microsoft Word - skripta3b.doc 6. Vlastnosti binárnych relácií V tejto časti sa budeme venovať šiestim vlastnostiam binárnych relácií. Najprv si uvedieme ich definíciu. Reláciu R definovanú v množine M nazývame: a ) reflexívnou, ak

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Katedra informatiky PLATNOSŤ BERGE-FULKERSONOVEJ HYPOTÉZY PRE ŠPECIÁLNE TR

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Katedra informatiky PLATNOSŤ BERGE-FULKERSONOVEJ HYPOTÉZY PRE ŠPECIÁLNE TR UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Katedra informatiky PLATNOSŤ BERGE-FULKERSONOVEJ HYPOTÉZY PRE ŠPECIÁLNE TRIEDY SNARKOV Peter Gazdík DIPLOMOVÁ PRÁCA Vedúci diplomovej

Podrobnejšie

Podpora metód operačného výskumu pri navrhovaní systému liniek doc. RNDr. Štefan PEŠKO, CSc. Katedra matematických metód, Fa

Podpora metód operačného výskumu pri navrhovaní systému liniek doc. RNDr. Štefan PEŠKO, CSc. Katedra matematických metód, Fa Podpora metód operačného výskumu pri navrhovaní systému liniek doc. RNDr. Štefan PEŠKO, CSc. stefan.pesko@fri.uniza.sk Katedra matematických metód, Fakulta riadenia a informatiky, Žilinská univerzita v

Podrobnejšie

Numerické riešenie všeobecnej (klasickej) DMPK rovnice.

Numerické riešenie všeobecnej (klasickej) DMPK rovnice. Numerické riešenie všeobecnej (klasickej) DMPK rovnice. J. Brndiar, R. Derian, P. Markos 11.6.27 1 Úvod Vodivost a transfér matica DMPK vs. zovšeobecnená DMPK rovnica 2 Numerické riešenie Ciel e Predpríprava

Podrobnejšie

Microsoft Word - Zaver.pisomka_januar2010.doc

Microsoft Word - Zaver.pisomka_januar2010.doc Písomná skúška z predmetu lgebra a diskrétna matematika konaná dňa.. 00. príklad. Dokážte metódou vymenovaním prípadov vlastnosť: Tretie mocniny celých čísel sú reprezentované celými číslami ktoré končia

Podrobnejšie

Susedov rozli²ujúci index grafu Bakalárska práca pre ²tudijný program Matematika alebo Ekonomická a nan ná matematika v akademickom roku 2019/20 vedúc

Susedov rozli²ujúci index grafu Bakalárska práca pre ²tudijný program Matematika alebo Ekonomická a nan ná matematika v akademickom roku 2019/20 vedúc Bakalárska práca pre ²tudijný program Matematika alebo Ekonomická a nan ná matematika v akademickom roku 2019/20 vedúci práce pokra ovanie v diplomovej práci vítané G graf, C mnoºina farieb, ϕ : E(G) C

Podrobnejšie

Microsoft Word - Argumentation_presentation.doc

Microsoft Word - Argumentation_presentation.doc ARGUMENTÁCIA V. Kvasnička Ústav aplikovanej informatiky FIIT STU Seminár UI, dňa 21.11.2008 Priesvitka 1 Úvodné poznámky Argumentácia patrí medzi dôležité aspekty ľudskej inteligencie. Integrálnou súčasťou

Podrobnejšie

Metrické konštrukcie elipsy Soňa Kudličková, Alžbeta Mackovová Elipsu, ako regulárnu kužeľosečku, môžeme študovať synteticky (konštrukcie bodov elipsy

Metrické konštrukcie elipsy Soňa Kudličková, Alžbeta Mackovová Elipsu, ako regulárnu kužeľosečku, môžeme študovať synteticky (konštrukcie bodov elipsy Metrické konštrukcie elipsy Soňa Kudličková, Alžbeta Mackovová Elipsu, ako regulárnu kužeľosečku, môžeme študovať synteticky (konštrukcie bodov elipsy) alebo analyticky (výpočet súradníc bodov elipsy).

Podrobnejšie

Zoznamové farbenia grafov

Zoznamové farbenia grafov Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava Zoznamové farbenia grafov (Diplomová práca) Lukáš Špalek Vedúca: RNDr. Edita Máčajová, PhD. Bratislava, 2010

Podrobnejšie

8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1.2 Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru

8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1.2 Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru 8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1. Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru P platí F B = F A, BD = AE, DG = EG F = G. 1.3 Dokážte

Podrobnejšie

Microsoft Word - Algoritmy a informatika-priesvitky02.doc

Microsoft Word - Algoritmy a informatika-priesvitky02.doc 3. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi základné formálne prostriedky

Podrobnejšie

2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom

2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom 2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom l nazývame dotyčnicou krivky f v bode P. Pre daný bod

Podrobnejšie

Siete vytvorené z korelácií casových radov

Siete vytvorené z korelácií casových radov Siete vytvorené z korelácií časových radov Beáta Stehlíková 2-EFM-155 Analýza sociálnych sietí Fakulta matematiky, fyziky a informatiky, UK v Bratislave, 2019 Siete vytvorené z korelácií Siete vytvorené

Podrobnejšie

1

1 1. CHARAKTERISTIKA DIGITÁLNEHO SYSTÉMU A. Charakteristika digitálneho systému Digitálny systém je dynamický systém (vo všeobecnosti) so vstupnými, v čase premennými veličinami, výstupnými premennými veličinami

Podrobnejšie

Priebeh funkcie

Priebeh funkcie Technická univerzita Košice monika.molnarova@tuke.sk Obsah 1 Monotónnosť funkcie Lokálne extrémy funkcie Globálne (absolútne) extrémy funkcie Konvexnosť a konkávnosť funkcie Monotónnosť funkcie Monotónnosť

Podrobnejšie

Matematický model činnosti sekvenčného obvodu 7 MATEMATICKÝ MODEL ČINNOSTI SEKVENČNÉHO OBVODU Konečný automat predstavuje matematický model sekvenčnéh

Matematický model činnosti sekvenčného obvodu 7 MATEMATICKÝ MODEL ČINNOSTI SEKVENČNÉHO OBVODU Konečný automat predstavuje matematický model sekvenčnéh 7 MTEMTICKÝ MODEL ČINNOSTI SEKVENČNÉHO OBVODU Konečný automat predstavuje matematický model sekvenčného obvodu. Konečný automat je usporiadaná pätica = (X, S, Y, δ, λ,) (7.) kde X je konečná neprázdna

Podrobnejšie

Microsoft Word - FRI”U M 2005 forma B k¾úè.doc

Microsoft Word - FRI”U M 2005 forma B k¾úè.doc Fakulta riadenia a informatik Žilinskej univerzit ( ) ( 6 ) 6 = 3 () 8 (D) 8 m Závislosť hmotnosti m častice od jej rýchlosti v je vjadrená vzťahom m =, kde m je v c pokojová hmotnosť častice, c je rýchlosť

Podrobnejšie

Vzorové riešenia úlohy 4.1 Bodovanie Úvod do TI 2010 Dôvod prečo veľa z Vás malo málo bodov bolo to, že ste sa nepokúsili svoje tvrdenia dokázať, prič

Vzorové riešenia úlohy 4.1 Bodovanie Úvod do TI 2010 Dôvod prečo veľa z Vás malo málo bodov bolo to, že ste sa nepokúsili svoje tvrdenia dokázať, prič Vzorové riešenia úlohy 4.1 Bodovanie Úvod do TI 2010 Dôvod prečo veľa z Vás malo málo bodov bolo to, že ste sa nepokúsili svoje tvrdenia dokázať, pričom to je veľmi dôležitá súčasť úlohy. Body sa udeľovali

Podrobnejšie

Neineárne programovanie zimný semester 2018/19 M. Trnovská, KAMŠ, FMFI UK 1

Neineárne programovanie zimný semester 2018/19 M. Trnovská, KAMŠ, FMFI UK 1 Neineárne programovanie zimný semester 2018/19 M. Trnovská, KAMŠ, FMFI UK 1 Metódy riešenia úloh nelineárneho programovania využívajúce Lagrangeovu funkciu 2 Veta: Bod ˆx je optimálne riešenie úlohy (U3)

Podrobnejšie

Prenosový kanál a jeho kapacita

Prenosový kanál a jeho kapacita Prenosový kanál a jeho kapacita Stanislav Palúch Fakulta riadenia a informatiky, Žilinská univerzita 5. mája 2011 Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Prenosový kanál a

Podrobnejšie

Operačná analýza 2

Operačná analýza 2 Súradnicové sústavy a zobrazenia Súradnicové sústavy v rovine (E 2 ) 1. Karteziánska súradnicová sústava najpoužívanejšia súradnicová sústava; určená začiatkom O, kolmými osami x, y a rovnakými jednotkami

Podrobnejšie

SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/ ročník MO Riešenia úloh česko-poľsko-slovenského stretnutia 1. Určte všetky trojice (a, b, c) kladných r

SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/ ročník MO Riešenia úloh česko-poľsko-slovenského stretnutia 1. Určte všetky trojice (a, b, c) kladných r SK MATEMATICKÁOLYMPIÁDA skmo.sk 009/010 59. ročník MO Riešenia úloh česko-poľsko-slovenského stretnutia 1. Určte všetky trojice (a, b, c) kladných reálnych čísel, ktoré sú riešením sústavy rovníc a b c

Podrobnejšie

Operačná analýza 2

Operačná analýza 2 Krivky (čiary) Krivku môžeme definovať: trajektória (dráha) pohybujúceho sa bodu, jednoparametrická sústava bodov charakterizovaná určitou vlastnosťou,... Krivky môžeme deliť z viacerých hľadísk, napr.:

Podrobnejšie

Relačné a logické bázy dát

Relačné a logické bázy dát Unifikácia riešenie rovníc v algebre termov Ján Šturc Zima, 2010 Termy a substitúcie Definícia (term): 1. Nech t 0,..., t n -1 sú termy a f je n-árny funkčný symbol, potom aj f(t 0,..., t n -1 ) je term.

Podrobnejšie

Matematika 2 - cast: Funkcia viac premenných

Matematika 2 - cast: Funkcia viac premenných Matematika 2 časť: Funkcia viac premenných RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Spojitosť

Podrobnejšie

Microsoft Word - veronika.DOC

Microsoft Word - veronika.DOC Telesá od Veroniky Krauskovej z 3. B Teleso uzavretá obmedzená časť priestoru Mnohosten je časť priestoru, ktorá je ohraničená mnohouholníkmi. Uhlopriečky, ktoré patria do niektorej steny sú stenové uhlopriečky,

Podrobnejšie

Microsoft Word - 16.kapitola.doc

Microsoft Word - 16.kapitola.doc 6. kapitola Logická teória diagnózy zložitých systémov 6. Úvodné poznámky tanovenie diagnózy zložitých systémov v medicíne u človeka, veľkých výrobných zariadení, elektronických obvodov, a pod.) patrí

Podrobnejšie

SK MATEMATICKÁOLYMPIÁDA skmo.sk 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh česko-poľsko-slovenského stretnutia 1. Dokážte, že kladné re

SK MATEMATICKÁOLYMPIÁDA skmo.sk 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh česko-poľsko-slovenského stretnutia 1. Dokážte, že kladné re SK MATEMATICKÁOLYMPIÁDA skmo.sk 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh česko-poľsko-slovenského stretnutia 1. Dokážte, že kladné reálne čísla a, b, c spĺňajú rovnicu a 4 + b 4 + c 4

Podrobnejšie

1

1 ADM a logika 5. prednáška Sémantické tablá priesvitka 1 Úvodné poznámky Cieľom dnešnej prednášky je moderná sémantická metóda verifikácie skutočnosti, či formula je tautológia alebo kontradikcia: Metóda

Podrobnejšie

Axióma výberu

Axióma výberu Axióma výberu 29. septembra 2012 Axióma výberu Axióma VIII (Axióma výberu) ( S)[( A S)(A ) ( A S)( B S)(A B A B = ) ( V )( A S)( x)(v A = {x})] Pre každý systém neprázdnych po dvoch disjunktných množín

Podrobnejšie

Paralelné algoritmy, cast c. 3

Paralelné algoritmy, cast c. 3 Paralelné algoritmy, čast č. 3 František Mráz Kabinet software a výuky informatiky, MFF UK, Praha Paralelné algoritmy, 2009/2010 František Mráz (KSVI MFF UK) Paralelné algoritmy, čast č. 3 Paralelné algoritmy,

Podrobnejšie

Úvod do lineárnej algebry Monika Molnárová Prednášky 2006

Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 1. 3. marca 2006 2. 10. marca 2006 c RNDr. Monika Molnárová, PhD. Obsah 1 Aritmetické vektory a matice 4 1.1 Aritmetické vektory........................

Podrobnejšie

Poznámky k cvičeniu č. 2

Poznámky k cvičeniu č. 2 Formálne jazyky a automaty (1) Zimný semester 2017/18 Zobrazenia, obrazy a inverzné obrazy Poznámky k cvičeniu č. 2 Peter Kostolányi 4. októbra 2017 Nech f : X Y je zobrazenie. Obraz prvku x X pri zobrazení

Podrobnejšie

Prehľad matematiky I. ROZDELENIE ČÍSEL 1. Prirodzené N: 1, 2, 3, 4,... a. kladné: 8; 6,3; 5; Celé Z:..., 3, 2, 1, 0, 1, 2, 3... b. záporné: 3;

Prehľad matematiky I. ROZDELENIE ČÍSEL 1. Prirodzené N: 1, 2, 3, 4,... a. kladné: 8; 6,3; 5; Celé Z:..., 3, 2, 1, 0, 1, 2, 3... b. záporné: 3; Prehľad matematiky I. ROZDELENIE ČÍSEL 1. Prirodzené N: 1, 2, 3, 4,... a. kladné: 8; 6,3; 5; 3 4 2. Celé Z:..., 3, 2, 1, 0, 1, 2, 3... b. záporné: 3; 3,4; 7; 11 3. Reálne R: 6,4; 7, 5, 6 ; 1, 5,87;...

Podrobnejšie

Vrcholovo-disjunktné cykly v grafoch.

Vrcholovo-disjunktné cykly v grafoch. Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Vrcholovo-disjunktné cykly v grafoch. Bakalárska práca 2013 Michal Janáčik Univerzita Komenského v Bratislave Fakulta matematiky,

Podrobnejšie

Študent 1. kapitola Maticová algebra I 1.1 Definícia matice V mnohých prípadoch dáta majú štruktúru dvojrozmernej tabuľky, ktorá má m riadkov a n stĺp

Študent 1. kapitola Maticová algebra I 1.1 Definícia matice V mnohých prípadoch dáta majú štruktúru dvojrozmernej tabuľky, ktorá má m riadkov a n stĺp Študent. kapitola Maticová algebra I. Definícia matice V mnohých prípadoch dáta majú štruktúru dvojrozmernej tabuľky, ktorá má m riadkov a n stĺpcov. Jednoduchý príklad dát tohto druhu je tabuľka, ktorá

Podrobnejšie

Microsoft Word - Diskusia11.doc

Microsoft Word - Diskusia11.doc Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky MATEMATIKA - 011 sem vlepiť čiarový kód uchádzača Test obsahuje 30 úloh. Na jeho vypracovanie máte 90 minút. Každá úloha spolu

Podrobnejšie

Analýza sociálnych sietí Geografická lokalizácia krajín EU

Analýza sociálnych sietí  Geografická lokalizácia krajín EU Analýza sociálnych sietí Geografická lokalizácia krajín EU Ekonomická fakulta TU v Košiciach 20. februára 2009 Vzt ahy medzi krajinami - teória grafov Doterajšie riešenia 1 problém farbenia grafov (Francis

Podrobnejšie

Snímka 1

Snímka 1 Generovanie LOGICKÝCH KONJUNKCIÍ doc. Ing. Kristína Machová, PhD. kristina.machova@tuke.sk http://people.tuke.sk/kristina.machova/ OSNOVA: 1. Prehľadávanie priestoru pojmov 2. Reprezentácia a použitie

Podrobnejšie

Operačná analýza 2

Operačná analýza 2 Niektoré náhodné procesy majú v praxi veľký význam, pretože sa často vyskytujú, napr.: Poissonov proces proces vzniku a zániku Wienerov proces stacionárne procesy,... Poissonov proces je homogénny Markovov

Podrobnejšie

Funkcie viac premenných

Funkcie viac premenných Funkcie viac premenných January 21, 215 Regulárne zobrazenia Nech je zobrazenie X = Φ(T) dané rovnicami: x 1 = ϕ 1 (t 1, t 2,, t n), x 2 = ϕ 2 (t 1, t 2,, t n), x n = ϕ n(t 1, t 2,, t n), a ak majú funkcie

Podrobnejšie

Zeszyty Naukowe PWSZ, Nowy Sącz 2013 Konštrukcie magických obdĺžnikov Marián Trenkler Faculty of Education, Catholic University in Ružomberok Hrabovsk

Zeszyty Naukowe PWSZ, Nowy Sącz 2013 Konštrukcie magických obdĺžnikov Marián Trenkler Faculty of Education, Catholic University in Ružomberok Hrabovsk Zeszyty Naukowe PWSZ, Nowy Sącz 2013 Konštrukcie magických obdĺžnikov Marián Trenkler Faculty of Education, Catholic University in Ružomberok Hrabovská cesta 1, 034 01 Ružomberok, Slovakia e-mail: marian.trenkler@ku.sk

Podrobnejšie

9. kapitola Maticová algebra II systém lineárnych rovníc, Frobeniova veta, Gaussova eliminačná metóda, determinanty 1. Systém lineárnych rovníc Systém

9. kapitola Maticová algebra II systém lineárnych rovníc, Frobeniova veta, Gaussova eliminačná metóda, determinanty 1. Systém lineárnych rovníc Systém 9. kapitola Maticová algebra II systém lineárnych rovníc, Frobeniova veta, Gaussova eliminačná metóda, determinanty. Systém lineárnych rovníc Systém lineárnych rovníc, ktorý obsahuje m rovníc o n neznámych

Podrobnejšie

Kolmogorovská zložitost

Kolmogorovská zložitost Kolmogorovská zložitosť 5.12.2013 (2013/14) KZ 5.12.2013 1 / 16 Kt zložitosť age(x) = min p{2 l(p) t : U(p) = x v priebehu t krokov} Def. (Kt zložitosť) UTS monotonne skenuje začiatok p kým vypíše x, t(p,

Podrobnejšie

12Prednaska

12Prednaska propozičná logika vs. logika prvého rádu globálna vs. kompozičná vetviaci sa čas vs. lineárny čas časové body vs. časové intervaly diskrétny čas vs. spojitý čas minulosť vs. budúcnosť distribovanosť vs.

Podrobnejšie

B5.indd

B5.indd Úvod do limitných prechodov Vladimír Janiš ÚVOD DO LIMITNÝCH PRECHODOV Autor: doc. RNDr. Vladimír Janiš, CSc. Recenzenti: doc. RNDr. Martin Kalina, CSc. RNDr. Pavol Krá, PhD. Vydavate : Belianum. Vydavate

Podrobnejšie

Microsoft Word - 8.cvicenie.doc

Microsoft Word - 8.cvicenie.doc Cvičenie Cvičenie 8.. ko je šecifikovaný argument? Riešenie. rgument je usoriadaná dvojica = ( Φ, ), kde {,,, } Φ = ϕ ϕ ϕ n je teória tvorená množinou formúl, ktorá vyhovuje odmienkam: () Φ (odmienka konzistentnosti),

Podrobnejšie

unhbox group let unhbox hbox {Sglobal mathchardef spacefactor }accent 20 Segroup spacefactor acce

unhbox group let unhbox hbox {Sglobal mathchardef spacefactor }accent 20 Segroup spacefactor acce Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava Šírenie správ v grafoch s proporcionálnym počtom chybných liniek (Diplomová práca) Mirko Zibolen Vedúci: Doc.

Podrobnejšie

Bakalárska práca

Bakalárska práca UNIVERZITA KARLOVA V PRAZE MATEMATICKO-FYZIKÁLNÍ FAKULTA BAKALÁŘSKÁ PRÁCE MICHAL ZACHAR Grafické modely v analýze diskrétních finančních dat Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské

Podrobnejšie

Pokrocilé programovanie XI - Diagonalizácia matíc

Pokrocilé programovanie XI - Diagonalizácia matíc Pokročilé programovanie XI Diagonalizácia matíc Peter Markoš Katedra experimentálnej fyziky F2-523 Letný semester 2015/2016 Obsah Fyzikálne príklady: zviazané oscilátory, anizotrópne systémy, kvantová

Podrobnejšie

Paralelné algoritmy, cast c. 2

Paralelné algoritmy, cast c. 2 Paralelné algoritmy, čast č. 2 František Mráz Kabinet software a výuky informatiky, MFF UK, Praha Paralelné algoritmy, 2009/2010 František Mráz (KSVI MFF UK) Paralelné algoritmy, čast č. 2 Paralelné algoritmy,

Podrobnejšie

Paralelné algoritmy, cast c. 3

Paralelné algoritmy, cast c. 3 Paralelné algoritmy, čast č. 3 František Mráz Kabinet software a výuky informatiky, MFF UK, Praha Paralelné algoritmy, 2011/2012 František Mráz (KSVI MFF UK) Paralelné algoritmy, čast č. 3 Paralelné algoritmy,

Podrobnejšie

Otázky k štátnej skúške z predmetu didaktika matematiky Prípravy študenta na štátnice - tvorba 14-tich rôznych príprav na vyučovaciu jednotku k temati

Otázky k štátnej skúške z predmetu didaktika matematiky Prípravy študenta na štátnice - tvorba 14-tich rôznych príprav na vyučovaciu jednotku k temati Otázky k štátnej skúške z predmetu didaktika matematiky Prípravy študenta na štátnice - tvorba 14-tich rôznych príprav na vyučovaciu jednotku k tematickým okruhom uvedeným nižšie - vyučovacia jednotka

Podrobnejšie

Úvodná prednáška z RaL

Úvodná prednáška z RaL Rozvrhovanie a logistika Základné informácie o predmete Logistika a jej ciele Štruktúra činností výrobnej logistiky Základné skupiny úloh výrobnej logistiky Metódy používané na riešenie úloh výrobnej logistiky

Podrobnejšie

Manažment v Tvorbe Softvéru 2018/2019

Manažment v Tvorbe Softvéru 2018/2019 (dokonč.) MTS 2018/19 I. M. rozsahu projektu II. M. rozvrhu projektu III. M. nákladov projektu rozsahu rozvrhu Definovanie činností nákladov Získanie požiadaviek Zoradenie činností Odhad trvania činností

Podrobnejšie

1

1 Slovenská technická univerzita v Bratislave FAKULTA INFORMATIKY A INFORMAČNÝCH TECHNOLÓGIÍ Ilkovičova 3, 812 19 Bratislava Používateľská príručka Tímový projekt Grafická podpora vyhľadávania znalostí v

Podrobnejšie

Teória pravdepodobnosti Zákony velkých císel

Teória pravdepodobnosti Zákony velkých císel 10. Zákony veľkých čísel Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. apríla 2014 1 Zákony veľkých čísel 2 Centrálna limitná veta Zákony veľkých čísel Motivácia

Podrobnejšie

midterm2014_1

midterm2014_1 Midterm 2014 Meno a priezvisko: obsahuje 5 príkladov, spolu 31>25 bodov skupina: 1) [8 bodov] Zistite, čo počíta nasledujúca funkcia foo pre n>=0. Hint: foo(1000) = 1. static long foo(long n) { return

Podrobnejšie

Preco kocka stací? - o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, ked sú velké

Preco kocka stací? - o tom, ako sú rozdelené vlastné hodnoty laplasiánu   v limite, ked sú velké o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, keď sú veľké o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, keď sú veľké zaujímavé, ale len pre matematikov... NIE! o tom, ako

Podrobnejšie

Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú in

Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú in Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú intuitívne jasné a názorné napr. prirodzené čísla, zlomok,

Podrobnejšie

Dokonalé a spriatelené čísla 3. kapitola. Pojem hustoty množiny v teorii čísel a dokonalé čísla In: Tibor Šalát (author): Dokonalé a spriatelené čísla

Dokonalé a spriatelené čísla 3. kapitola. Pojem hustoty množiny v teorii čísel a dokonalé čísla In: Tibor Šalát (author): Dokonalé a spriatelené čísla Dokonalé a spriatelené čísla 3. kapitola. Pojem hustoty množiny v teorii čísel a dokonalé čísla In: Tibor Šalát (author): Dokonalé a spriatelené čísla. (Slovak). Praha: Mladá fronta, 1969. pp. 33 46. PersistentofURL:

Podrobnejšie

Informačné technológie

Informačné technológie Informačné technológie Piatok 15.11. 2013 Matúš Péči Barbora Zahradníková Soňa Duchovičová Matúš Gramlička Začiatok/Koniec Z K Vstup/Výstup A, B Načítanie vstupných premenných A, B resp. výstup výstupných

Podrobnejšie

SRPkapitola06_v1.docx

SRPkapitola06_v1.docx Štatistické riadenie procesov Regulačné diagramy na reguláciu porovnávaním 6-1 6 Regulačné diagramy na reguláciu porovnávaním Cieľ kapitoly Po preštudovaní tejto kapitoly budete vedieť: čo sú regulačné

Podrobnejšie

Hranoly (11 hodín) September - 17 hodín Opakovanie - 8. ročník (6 hodín) Mesiac Matematika 9. ročník 5 hodín/týždeň 165 hodín/rok Tematický celok Poče

Hranoly (11 hodín) September - 17 hodín Opakovanie - 8. ročník (6 hodín) Mesiac Matematika 9. ročník 5 hodín/týždeň 165 hodín/rok Tematický celok Poče Hranoly ( hodín) September - 7 hodín Opakovanie - 8. ročník (6 hodín) Mesiac Matematika 9. ročník 5 hodín/týždeň 65 hodín/rok Tematický celok Počet hodín 6 Téma Obsahový štandard Výkonový štandard Opakovanie

Podrobnejšie

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Zachovanie mentálnej mapy hrán pri interakcii s grafom Diplomová práca Bra

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Zachovanie mentálnej mapy hrán pri interakcii s grafom Diplomová práca Bra Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Zachovanie mentálnej mapy hrán pri interakcii s grafom Diplomová práca Bratislava, 2013 Bc. Martin Ďuriš Univerzita Komenského

Podrobnejšie

1 Portál pre odborné publikovanie ISSN Heuristický adaptívny PSD regulátor založený na miere kmitavosti Šlezárová Alexandra Elektrotechnika

1 Portál pre odborné publikovanie ISSN Heuristický adaptívny PSD regulátor založený na miere kmitavosti Šlezárová Alexandra Elektrotechnika 1 Portál pre odborné publikovanie ISSN 1338-0087 Heuristický adaptívny PSD regulátor založený na miere kmitavosti Šlezárová Alexandra Elektrotechnika 28.04.2010 Článok spočíva v predstavení a opísaní algoritmu

Podrobnejšie

Pokrocilé spracovanie obrazu - Fourierová transformácia

Pokrocilé spracovanie obrazu - Fourierová transformácia Pokročilé spracovanie obrazu - Fourierová transformácia Ing. Viktor Kocur viktor.kocur@fmph.uniba.sk DAI FMFI UK 29.11.2017 Obsah 1 Segmentácia O čo ide 2 Watershed Princíp Postup 3 k-means clustering

Podrobnejšie

Stavba Lobačevského planimetrie Dodatok In: Ján Gatial (author); Milan Hejný (author): Stavba Lobačevského planimetrie. (Slovak). Praha: Mladá fronta,

Stavba Lobačevského planimetrie Dodatok In: Ján Gatial (author); Milan Hejný (author): Stavba Lobačevského planimetrie. (Slovak). Praha: Mladá fronta, Stavba Lobačevského planimetrie Dodatok In: Ján Gatial (author); Milan Hejný (author): Stavba Lobačevského planimetrie. (Slovak). Praha: Mladá fronta, 1969. pp. 110 116. Persistent URL: http://dml.cz/dmlcz/403692

Podrobnejšie

Inteligentné rozhodovacie systémy Heuristické prehľadávanie SP Október, 2018 Katedra kybernetiky

Inteligentné rozhodovacie systémy Heuristické prehľadávanie SP   Október, 2018 Katedra kybernetiky Inteligentné rozhodovacie systémy Heuristické prehľadávanie SP Marian.Mach@tuke.sk http://people.tuke.sk/marian.mach Október, 2018 Katedra kybernetiky a umelej inteligencie FEI, TU v Košiciach 1 Best-first

Podrobnejšie

Microsoft Word - mpicv11.doc

Microsoft Word - mpicv11.doc 1. Vypočítajte obsah plochy ohraničenej súradnicovými osami a grafom funkcie y = x. a) vypočítame priesečníky grafu so súradnicovými osami x=... y = = y =... = x... x= priesečníku grafu funkcie so ; a

Podrobnejšie

Dirichletov princíp 4. kapitola. Kódovanie In: Lev Bukovský (author); Igor Kluvánek (author): Dirichletov princíp. (Slovak). Praha: Mladá fronta, 1969

Dirichletov princíp 4. kapitola. Kódovanie In: Lev Bukovský (author); Igor Kluvánek (author): Dirichletov princíp. (Slovak). Praha: Mladá fronta, 1969 Dirichletov princíp 4. kapitola. Kódovanie In: Lev Bukovský (author); Igor Kluvánek (author): Dirichletov princíp. (Slovak). Praha: Mladá fronta, 1969. pp. 30 38. Persistent URL: http://dml.cz/dmlcz/403703

Podrobnejšie

Obsah 1 Úvod Predhovor Sylaby a literatúra Grupy a podgrupy 4 2

Obsah 1 Úvod Predhovor Sylaby a literatúra Grupy a podgrupy 4 2 Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 2 Grupy a podgrupy 4 2.1 Základné vlastnosti grúp..............................

Podrobnejšie

UČEBNÉ OSNOVY

UČEBNÉ    OSNOVY UČEBNÉ OSNOVY Predmet: Matematika 8. 9. ročník (ISCED ) Charakteristika predmetu: Učebný predmet matematika na. stupni ZŠ je zameraný na rozvoj matematickej kompetencie tak, ako ju formuloval Európsky

Podrobnejšie

NSK Karta PDF

NSK Karta PDF Názov kvalifikácie: Projektový manažér pre informačné technológie Kód kvalifikácie U2421003-01391 Úroveň SKKR 7 Sektorová rada IT a telekomunikácie SK ISCO-08 2421003 / Projektový špecialista (projektový

Podrobnejšie

S rok 2 roky t = 4 1 rok MATEMATIKA I A REPETITÓRIUM Z MATEMATIKY pre Hospodársku informatiku Monika Molnárová Košice 2018

S rok 2 roky t = 4 1 rok MATEMATIKA I A REPETITÓRIUM Z MATEMATIKY pre Hospodársku informatiku Monika Molnárová Košice 2018 S 230 280 270 0 1 2 3 4 5 1 rok 2 roky t = 4 1 rok MATEMATIKA I A REPETITÓRIUM Z MATEMATIKY pre Hospodársku informatiku Monika Molnárová Košice 2018 MATEMATIKA I A REPETITÓRIUM Z MATEMATIKY pre Hospodársku

Podrobnejšie

Modelovanie a analýza workflow procesov Diplomová práca FEI Študijný program: Študijný odbor: Aplikovaná informatika Aplikovaná infor

Modelovanie a analýza workflow procesov Diplomová práca FEI Študijný program: Študijný odbor: Aplikovaná informatika Aplikovaná infor Modelovanie a analýza workflow procesov Diplomová práca FEI-5384-352 Študijný program: Študijný odbor: Aplikovaná informatika 9.2.9 Aplikovaná informatika Školiace pracovisko: Ústav informatiky a matematiky

Podrobnejšie

tkacikova

tkacikova Apollonius z Perge (história matematiky) Jana Tkačíková, 4. roč. Mat-NV Apollonius z Perge Apollonius z Perge (približne 262-190 p.n.l.) bol grécky geometer a astronóm, je známy ako jeden z najvýznamnejších

Podrobnejšie

III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) Matematická analýza IV (ÚMV/MAN2d/10) RNDr. Lenka Halčinová, PhD.

III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) Matematická analýza IV (ÚMV/MAN2d/10) RNDr. Lenka Halčinová, PhD. III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) (ÚMV/MAN2d/10) lenka.halcinova@upjs.sk 11. apríla 2019 3.3 Derivácia v smere, vzt ah diferenciálu, gradientu a smerovej

Podrobnejšie

Analýza toku dát Ján Šturc Zima 2010 Kompilátory

Analýza toku dát Ján Šturc Zima 2010 Kompilátory Analýza toku dát Ján Šturc Zima 2010 Kompilátory O čom to je? Počas kompilácie usudzujeme o vlastnostiach a chovaní sa programu počas behu. Čo nás zaujíma Vlastnosti, ktoré musia platiť vždy (invarianty)

Podrobnejšie

Microsoft Word - a2f6-4f69-ca8b-718e

Microsoft Word - a2f6-4f69-ca8b-718e Charakteristika vyučovacieho predmetu Predmet matematika v nižšom strednom vzdelávaní je prioritne zameraný na budovanie základov matematickej gramotnosti a na rozvíjanie kognitívnych oblastí - vedomosti,

Podrobnejšie

1. KOMPLEXNÉ ČÍSLA 1. Nájdite výsledok operácie v tvare x+yi, kde x, y R. a i (5 2i)(4 i) b. i(1 + i)(1 i)(1 + 2i)(1 2i) (1 7i) c. (2+3i) a+bi d

1. KOMPLEXNÉ ČÍSLA 1. Nájdite výsledok operácie v tvare x+yi, kde x, y R. a i (5 2i)(4 i) b. i(1 + i)(1 i)(1 + 2i)(1 2i) (1 7i) c. (2+3i) a+bi d KOMPLEXNÉ ČÍSLA Nájdite výsledok operácie v tvare xyi, kde x, y R 7i (5 i)( i) i( i)( i)( i)( i) ( 7i) (i) abi a bi, a, b R i(i) 5i Nájdite x, y R také, e (x y) i(x y) = i (ix y)(x iy) = i y ix x iy i

Podrobnejšie

ROZBOR ROVNOVÁŽNYCH BINÁRNYCH DIAGRAMOV (2. ČASŤ) Cieľ cvičenia Zostrojiť rovnovážne binárne diagramy podľa zadania úloh na cvičení. Teoretická časť P

ROZBOR ROVNOVÁŽNYCH BINÁRNYCH DIAGRAMOV (2. ČASŤ) Cieľ cvičenia Zostrojiť rovnovážne binárne diagramy podľa zadania úloh na cvičení. Teoretická časť P ROZBOR ROVNOVÁŽNYCH BINÁRNYCH DIAGRAMOV (2. ČASŤ) Cieľ cvičenia Zostrojiť rovnovážne binárne diagramy podľa zadania úloh na cvičení. Teoretická časť Predošlá kapitola bol venovaná rozboru základných rovnovážnych

Podrobnejšie

Slovenská komisia Matematickej olympiády FMFI UK, Mlynská dolina, Bratislava 51. ročník matematickej olympiády Riešenia úloh I. kola kategórie

Slovenská komisia Matematickej olympiády FMFI UK, Mlynská dolina, Bratislava 51. ročník matematickej olympiády Riešenia úloh I. kola kategórie Slovenská komisia Matematickej olympiády FMFI UK, Mlynská dolina, 842 48 Bratislava 51. ročník matematickej olympiády Riešenia úloh I. kola kategórie P Tento pracovný materiál nie je určený priamo študentom

Podrobnejšie

9.1 MOMENTY ZOTRVACNOSTI \(KVADRATICKÉ MOMENTY\) A DEVIACNÝ MOMENT PRIEREZU

9.1 MOMENTY ZOTRVACNOSTI \(KVADRATICKÉ MOMENTY\) A DEVIACNÝ MOMENT PRIEREZU Učebný cieľ kapitoly Po preštudovaní tejto kapitoly by ste mali ovládať: Charakteristiku kvadratických momentov prierezových plôch. Ako je definovaný kvadraticky moment plochy k osi a k pólu. Ako je definovaný

Podrobnejšie

K S P Korešpondenčný seminár z programovania XXXIV. ročník, 2016/17 Katedra základov a vyučovania informatiky FMFI UK, Mlynská Dolina, Bratisla

K S P Korešpondenčný seminár z programovania XXXIV. ročník, 2016/17 Katedra základov a vyučovania informatiky FMFI UK, Mlynská Dolina, Bratisla K S P Korešpondenčný seminár z programovania XXXIV. ročník, 016/17 Katedra základov a vyučovania informatiky FMFI UK, Mlynská Dolina, 84 48 Bratislava Úlohy 1. kola zimnej časti, kategória T Termín odoslania

Podrobnejšie

DECRETO PAGINA WEB.pdf

DECRETO PAGINA WEB.pdf F @ T FI Q O P O Q O P O H É É ë Ê Ê ê î î Ï î ê î ê Ï Ï * +, -. / 0 1 / 2 / -3 0 4 / 5 6 7 / - -6 8 3 9, -4 3-8 6 2 : 6 1 ;8 6 0 < 6 8 6 - = > 4? / +, @ 0 < 3? ;6 0 < / 8 6 2 3-6 0 4 ;3 + B C E F G F

Podrobnejšie

Teoretická informatika 1. Vzťahy medzi zložitostnými triedami (complexity ZOO) základné vety o zložitosti (Savitchova veta, veta o zrýchlení, gap theo

Teoretická informatika 1. Vzťahy medzi zložitostnými triedami (complexity ZOO) základné vety o zložitosti (Savitchova veta, veta o zrýchlení, gap theo Teoretická informatika 1. Vzťahy medzi zložitostnými triedami (complexity ZOO) základné vety o zložitosti (Savitchova veta, veta o zrýchlení, gap theorem,... ) P, NP, PSPACE, APX, IP, BPP, ZPP, RP polynomiálna

Podrobnejšie

PHPR-Predbezne_opatrenia

PHPR-Predbezne_opatrenia MINISTERSTVO ŽIVOTNÉHO PROSTREDIA SLOVENSKEJ REPUBLIKY Implementácia smernice Európskeho parlamentu a Rady 2007/60/ES z 23. októbra 2007 o hodnotení a manažmente povodňových rizík Predbežné hodnotenie

Podrobnejšie

Informačná a modelová podpora pre kvantifikáciu prvkov daňovej sústavy SR

Informačná a modelová podpora pre kvantifikáciu prvkov daňovej sústavy SR Nelineárne optimalizačné modely a metódy Téma prednášky č. 5 Prof. Ing. Michal Fendek, CSc. Katedra operačného výskumu a ekonometrie Ekonomická univerzita Dolnozemská 1 852 35 Bratislava Označme ako množinu

Podrobnejšie

1-INF-155 Algebra 2 Martin Sleziak 10. februára 2013

1-INF-155 Algebra 2 Martin Sleziak 10. februára 2013 1-INF-155 Algebra 2 Martin Sleziak 10. februára 2013 Obsah 1 Úvod 4 1.1 Predhovor...................................... 4 1.2 Sylaby a literatúra................................. 4 2 Grupy a podgrupy 5

Podrobnejšie

SK MATEMATICKÁOLYMPIÁDA skmo.sk 68. ročník Matematickej olympiády 2018/2019 Riešenia úloh domáceho kola kategórie A 1. O postupnosti (a n ) n=1 vieme,

SK MATEMATICKÁOLYMPIÁDA skmo.sk 68. ročník Matematickej olympiády 2018/2019 Riešenia úloh domáceho kola kategórie A 1. O postupnosti (a n ) n=1 vieme, SK MATEMATICKÁOLYMPIÁDA skmo.sk 68. ročník Matematickej olympiády 2018/2019 Riešenia úloh domáceho kola kategórie A 1. O postupnosti (a n ) n=1 vieme, že pre všetky prirodzené čísla n platí a n+1 = a 2

Podrobnejšie

Vhodnosť lokálneho ohodnocovania grafu v sociálnej sieti obchodného registra SR Peter Vojtek Mária Bieliková Fakulta informatiky a informačných techno

Vhodnosť lokálneho ohodnocovania grafu v sociálnej sieti obchodného registra SR Peter Vojtek Mária Bieliková Fakulta informatiky a informačných techno Vhodnosť lokálneho ohodnocovania grafu v sociálnej sieti obchodného registra SR Peter Vojtek Mária Bieliková Fakulta informatiky a informačných technológií Slovenská technická univerzita v Bratislave Motivácia

Podrobnejšie

SMART_GOVERNANCE_Ftacnik

SMART_GOVERNANCE_Ftacnik Smart governance alebo Inteligentné riadenie pre samosprávu Milan Ftáčnik Fakulta matematiky, fyziky a informatiky Univerzity Komenského v Bratislave Smart Cities 2018 od vízií k efektívnym inováciám,

Podrobnejšie