Základy automatického riadenia - Prednáška 2

Veľkosť: px
Začať zobrazovať zo stránky:

Download "Základy automatického riadenia - Prednáška 2"

Prepis

1 Základy automatického riadenia Predná²ka 2 doc. Ing. Anna Jadlovská, PhD., doc. Ing. Ján Jadlovský, CSc. Katedra kybernetiky a umelej inteligencie Fakulta elektrotechniky a informatiky Technická univerzita v Ko²iciach LS 2015/2016 (TUKE) Základy automatického riadenia LS 2015/ / 30

2 Denícia Systém je objekt s denovanými veli inami a denovanými vz ahmi medzi nimi. Deterministický jednorozmerný systém je denovaný na skúmanom objekte tak, ºe na z okolia pôsobí vstupná veli ina u(t) a výsledkom tohto pôsobenia je pozorovate ná, výstupná veli ina y(t), pri om pri rovnakých po iato ných podmienkach k ur itej veli ine u(t) je priradená vºdy tá istá veli ina y(t). Nezávislá premenná je as t. Pri dynamických systémoch so sústredenými parametrami sú vz ahy medzi vstupnými a výstupnými veli inami opísané pomocou oby ajných diferenciálnych rovníc a deriváciami pod a asu. (TUKE) Základy automatického riadenia LS 2015/ / 30

3 Zákon superpozície Lineárne systémy sú také systémy, pre ktoré platí zákon superpozície. Tento zákon moºno vyjadri rovnicou y = T (a 1 u 1 + a 2 u 2 ) kde T je lineárny operátor a a 1, a 2 sú reálne ísla. = a 1 T (u 1 ) + a 2 T (u 2 ) = a 1 y 1 + a 2 y 2 (1) Ak pre proces denujeme z h adiska priestoru a asu súbor typicky významných vlastností, dôleºitých pre cie ná²ho skúmania, potom hovoríme, ºe sme na objekte - procese denovali systém. (TUKE) Základy automatického riadenia LS 2015/ / 30

4 Klasikácia systémov Dynamické systémy so sústredenými parametrami so rozloženými parametrami lineárne nelineárne deterministické stochastické s konštantnými parametrami s premenlivými parametrami diskrétne spojité (TUKE) Základy automatického riadenia LS 2015/ / 30

5 Základné charakteristiky Matematický opis lineárnych spojitých systémov je moºné vyjadri pomocou dvoch ekvivalentných opisov: vonkaj²í opis - opis pomocou vstupno-výstupných premenných - diferenciálne rovnice, obrazové prenosy vnútorný opis - opis pomocou vnútorných premenných Ak poznáme vnútorný popis (model) LDS, jednozna ne z neho vyplýva aj vonkaj²í opis (V/V opis) LDS. (TUKE) Základy automatického riadenia LS 2015/ / 30

6 Vonkaj²í matematický opis spojitých LDS systémov Spojitý LDS je moºné popísa lineárnou diferenciálnou rovnicou: a n y (n) (t) a 1 y (t) + a 0 y(t) = b m u (m) (t) b 1 u (t) + b 0 u(t) kde a 0, a 1,..., a n, b 0, b 1,..., b m sú kon²tantné koecienty y(t) je výstup LDS u(t) je vstup LDS podmienka fyzikálnej realizovate nosti: n m (TUKE) Základy automatického riadenia LS 2015/ / 30

7 Pri získavaní modelu LDS (odvodenie LDR) vychádzame z fyzikálnej podstaty dejom skúmaného LDS. Vonkaj²í (V/V) opis LDS: model v tvare LDS obrazový prenos v LT frekven ný prenos prechodová charakteristika, impulzná charakteristika, frekven ná charakteristika Vnútorný opis LDS: metóda stavového priestoru (úplný obraz o v²etkých dynamických vlastnostiach lineárneho systému) Metódy zaloºené na stavovom priestore pracujú v t-oblasti. (TUKE) Základy automatického riadenia LS 2015/ / 30

8 Laplaceova transformácia Laplaceova transformácia poskytuje ve mi jednoduchú metódu rie²enia lineárnych diferenciálnych rovníc vhodná na odvodenie vstupno-výstupných modelov, ktorých pouºitie je výhodné pri identikácii alebo návrhu algoritmov riadenia Laplaceova transformácia je daná vz ahom L{f (t)} 0 f (t) e st Funkciu f (t) nazývame originálom a funkciu F (s) jej obrazom. (TUKE) Základy automatického riadenia LS 2015/ / 30

9 Eulerove vzorce Pre praktické výpo ty pomocou Laplaceovej transformácie sú uºito né pomocné vz ahy(eulerove vzorce): cos(ωt) = ei ωt + e i ωt, sin(ωt) = ei ωt e i ωt, 2 2 i e i ωt = cos(ωt) + i sin(ωt), e i ωt = cos(ωt) i sin(ωt). Základné vlastnosti Laplaceovej transformácie: originál obraz linearita k 1 f 1 ± k 2 f 2 k 1 F 1 ± k 2 F 2 substitúcia f (at) 1/aF (s/a) posun v origináli f (t a) e at F (s) posun v obraze e at f (t) F (s + a) (TUKE) Základy automatického riadenia LS 2015/ / 30

10 Obrazový prenos Obrazový prenos LDS je denovaný ako pomer obrazu Y(s) výstupnej veli iny y(t) ku obrazu U(s) vstupnej veli iny u(t): F (s) = Y (s) U(s) Popis LDS s pomocou obrazového prenosu SISO systém, SIMO systém, MIMO systém (TUKE) Základy automatického riadenia LS 2015/ / 30

11 Obrazový prenos Prenos systému je podiel obrazu výstupu ku obrazu vstupu pri nulových po iato ných podmienkach: L{y(t)} = L f (τ)u(t τ)dτ 0 y(t)e st = f (τ)u(t τ)dτ e st 0 0 ξ = t τ t = t + ξ = dξ Y (s) = f (τ)u(ξ)dτ e sτ e sξ dξ = = f (τ)e sτ dτ } {{ } F (s) 0 0 u(ξ)e sξ dξ = F (s)u(s) } {{ } U(s) F (s) = Y (s) U(s) Y (s) = F (s)u(s) (2) (TUKE) Základy automatického riadenia LS 2015/ / 30

12 Obrazový prenos Funk ný vz ah medzi vstupnou a výstupnou veli inou uvaºovaného systému je daný nasledovnou diferenciálnou rovnicou: a 2 y (t) + a 1 y (t) + a 0 y(t) = ku(t) (3) Za predpokladu, ºe sústava je v rovnováºnom stave, teda po iato né podmienky sú nulové (y(0) = 0, y (0) = 0), pouºitím LT môºeme písa : odkia obrazový prenos je: a 2 s 2 Y (s) + a 1 sy (s) + a 0 Y (s) = ku(s), (4) F (s) = Y (s) U(s) = k a 2 s 2 + a 1 s + a 0 (5) (TUKE) Základy automatického riadenia LS 2015/ / 30

13 Obrazový prenos V²eobecne môºeme obrazový prenos F (s) zapísa v tvare: F (s) = Y (s) U(s) = b ms m + b m 1 s m b 0 a n s n + a n 1 s n a 0 (6) Korene polynómu itate a ozna ujeme ako nuly a korene polynómu menovate a ako póly. Polynóm menovate a rovný nule sa volá charakteristická rovnica. (TUKE) Základy automatického riadenia LS 2015/ / 30

14 Príklady systémov prvého rádu - elektrický systém Elektrický systém vstup u 1 (t) výstup u 2 (t) Úloha: Nájdite v ah medzi vstupom a výstupom u 2 (t) = f (u 1 (t)) (TUKE) Základy automatického riadenia LS 2015/ / 30

15 Príklady systémov prvého rádu - elektrický systém Ak R 1 a C 1 sú ideálne (nemenia svoje hodnoty v závislosti od teploty, prúdu), systém je LINEÁRNY Pod a 1. a 2. Kirchhoovho zákona platí: u 1 (t) = R 1 i 1 (t)+u 2 (t), i 1 (t) = i 2 (t)+i c (t), i 2 (t) = 0 i 1 (t) = i c (t) a prúd te úci kondenzátorom môºeme vyjadri v tvare: i c = i 1 = C 1 du 2 u 1 = R 1 C 1 du 2 + u 2 (TUKE) Základy automatického riadenia LS 2015/ / 30

16 Príklady systémov prvého rádu - elektrický systém Ozna ením R 1 C 1 = T 1 dostávame nehomogénnu diferenciálnu rovnicu 1. rádu: T 1 du 2 + u 2 = u 1 Rie²enie uvedenej diferenciálnej rovnice sa skladá z rie²enia homogénnej dif. rovnice a partikulárneho rie²enia dif. rovnice: homogénnej rovnici T 1 du 2 + u 2 = 0 prislúcha rie²enie: u 2h = K 1 e st, u 2h (t) = K 1 e t T 1 kde s = 1/T 1 pre partikulárne rie²enie platí: nech u 1 (t) = u 1K, potom rie²enie má tvar u 2n (t) = K 2 a po dosadení do rovnice: T K 2 = u 1K ur íme kon²tantu K 2 = u 1K, u 2n (t) = u 1K (TUKE) Základy automatického riadenia LS 2015/ / 30

17 Príklady systémov prvého rádu - elektrický systém Výsledné rie²enie diferenciálnej rovnice: u 2 (t) = u 2h (t) + u 2n (t) = K 1 e t T 1 Kon²tantu K 1 ur íme z po iato ných podmienok: + u 1K u 2 (0) = 0 0 = K 1 e t/t 1 +u 1k K 1 = u 1K u 2 (t) = u 1k (1 e t T 1 ) Gracký priebeh rie²enia diferenciálnej rovnice pomocou analytických metód: (TUKE) Základy automatického riadenia LS 2015/ / 30

18 Elektrický systém prvého rádu (TUKE) Základy automatického riadenia LS 2015/ / 30

19 Elektrický systém prvého rádu Rie²enie pomocou Laplaceovej transformácie Nech u 1 (t) = u 1K, u 1 (0) = 0 du 2 (t) T 1 +u 2 (t) = u 1 (t) prepis do LT T 1 U 2 (s)s+u 2 (s) = u 1K s pri om Laplaceov obraz výstupnej veli iny: U 2 (s) = u 1 (t) U 1 (s) = u 1K s u 1K s(t 1 s + 1) = A s + B T 1 s + 1, A = u 1K, B = u 1K T 1 U 2 (s) = u 1K ( 1 s T 1 T 1 s + 1 ) (TUKE) Základy automatického riadenia LS 2015/ / 30

20 Elektrický systém prvého rádu Po prevode do asovej oblasti: u 2 (t) = u 1k (1 e t T 1 ) Gracký priebeh rie²enia diferenciálnej rovnice pomocou Laplaceovej transformácie: (TUKE) Základy automatického riadenia LS 2015/ / 30

21 Elektrický systém prvého rádu Jednokapacitný prenos Transformáciou diferenciálnej rovnice pri nulových po. podmienkach: T 1 du 2 (t) na Laplaceov obrazový prenos dostávame: + u 2 (t) = u 1 (t) T 1 U 2 (s)s + U 2 (s) = U 1 (s) a následnou úpravou získame Laplaceov obrazový prenos jednokapacitnej sústavy: F (s) = U 2(s) U 1 (s) = 1 T 1 s + 1 (TUKE) Základy automatického riadenia LS 2015/ / 30

22 Hydraulický systém prvého rádu Hydraulický systém prvého rádu vstup q 1 (t) - prítok média do nádoby výstup q 2 (t) - mnoºstvo vytekajúceho média z nádoby výstup h 1 (t) - vý²ka hladiny v nádobe S 1 - prierez nádoby, R 1 - hydr. odpor, γ - ²pecická váha kvapaliny Úloha 1: Nájdite vz ah medzi vstupom a výstupom q 2 (t) = f 1 (q 1 (t)) Úloha 2: Nájdite vz ah medzi vstupom a výstupom h 1 (t) = f 2 (q 1 (t)) (TUKE) Základy automatického riadenia LS 2015/ / 30

23 Hydraulický systém prvého rádu Bilan ná rovnica d(kvapaliny) = prítok ook dh 1 (t) S 1 = q 1 (t) q 2 (t) (TUKE) Základy automatického riadenia LS 2015/ / 30

24 Hydraulický systém prvého rádu Úloha 1 Výstup q 2 (t) - priamo úmerný hydraulickému tlaku v mieste odporu R 1, nepriamo úmerný odporu R 1 a lineárne závislý od vý²ky hladiny h 1 (t): q 2 (t) = γ R 1 h 1 (t) kde γ je ²pecická váha kvapaliny vytekajúca cez hydraulický odpor R 1 Deriváciou dostávame: dq 2 (t) = γ R 1 dh 1 (t) dh 1(t) = R 1 γ dq 2 (t) (TUKE) Základy automatického riadenia LS 2015/ / 30

25 Hydraulický systém prvého rádu Úloha 1 Dosadením do pôvodnej diferenciálnej rovnice dostaneme: S 1 R 1 γ dq 2 (t) + q 2 (t) = q 1 (t) Ozna ením S 1R 1 γ = T 1 sme získali LDR I. rádu. Výsledná diferenciálna rovnica pre hydraulický systém: T 1 dq 2 (t) + q 2 (t) = q 1 (t), ktorej rie²ením je: q 2 (t) = q 1 (1 e t T 1 ) o je rovnako ako v predo²lom príklade tvar rie²enia pre jednokapacitný prenos. (TUKE) Základy automatického riadenia LS 2015/ / 30

26 Hydraulický systém prvého rádu Úloha 2a: lineárny prípad, h 1(t) = f (q 1(t)) Ak chceme rie²i úlohu h 1 (t) = f (q 1 (t)), dosadíme do výsledného bilan ného vz ahu: dh 1 (t) S 1 = q 1 (t) q 2 (t) za q 2 (t) = γh 1(t) R 1 : S 1 dh 1 (t) a následnou úpravou dostávame LDR: S 1 dh 1 (t) = q 1 (t) γh 1(t) R 1 + γ R 1 h 1 (t) = q 1 (t), ktorej postup rie²enia je totoºný s uº uvedenými príkladmi. (TUKE) Základy automatického riadenia LS 2015/ / 30

27 Hydraulický systém prvého rádu Úloha 2b: nelineárny prípad Ak pre výtok kvapaliny z nádoby platí: q 2 (t) = k 1 f 2gh 1 (t), kde k 1 - kon²t., f - priemer výtokového otvoru, g - gravita né zrýchlenie Ozna ením k 2 = k 1 f 2g a dosadením do výslednej bilan nej rovnice: S 1 dh 1 (t) = q 1 (t) q 2 (t) dostávame nelineárnu diferenciálnu rovnicu (NDR): S 1 dh 1 (t) + k 2 h1 (t) = q 1 (t), NDR nevieme rie²i analyticky v t-oblasti oblasti, ani pomocou Laplaceovej transformácie. (TUKE) Základy automatického riadenia LS 2015/ / 30

28 Hydraulický systém prvého rádu Úloha 2b: nelineárny prípad (TUKE) Základy automatického riadenia LS 2015/ / 30

29 Hydraulický systém prvého rádu Úloha 2b: nelineárny prípad, linearizácia Linearizácia rozvoj do Taylorovho radu: q 2 (t) q 2 (h1) 0 + q 2(h 1) (h 1(t) h 0) ! pri om platí: q 2 (h 0) = k 1 2 h 0, 1 q 2 (h0) = k h 0 = k 1 h dosadením do rovnice dostávame: q 2 (t) k 2 h k 2 q 2 (t) k 2 h h 0 1 2h k 2 2 (h 1 (t) h 0 1) h 0 1 2h 0 1 h 1 (t) 2h 0 1 (TUKE) Základy automatického riadenia LS 2015/ / 30

30 Hydraulický systém prvého rádu Úloha 2b: nelineárny prípad Ozna ením: k 3 = k 2 h 0 1 dostávame výsledný hydraulický model vyjadrený LDR: S 1 dh 1 (t) 2 + k 3 h h 0 1 (t) = q 1 (t) k 3, 1 ktorú vieme rie²i metódami uvedenými v predo²lých príkladoch. (TUKE) Základy automatického riadenia LS 2015/ / 30

Slide 1

Slide 1 Diferenciálne rovnice Základný jazyk fyziky Motivácia Typická úloha fyziky hľadanie časových priebehov veličín, ktoré spĺňajú daný fyzikálny zákon. Určte trajektóriu telesa rt ( )???? padajúceho v gravitačnom

Podrobnejšie

prednaska

prednaska Úvod do nelineárnych systémov doc. Ing. Anna Jadlovská, PhD. ZS 2016 Prednáška 1 1.1 Stručné zopakovanie pojmov z LDS Uvažujme lineárny t-invariantný DS n-tého rádu (LDS): pričom x(t) 2 R n, u(t) 2 R n,

Podrobnejšie

Zadání čtvrté série

Zadání čtvrté série Pomocný text Vektory V na²om pomocnom texte Vás prevedieme postupne afínnou geometriou, skalárnym sú inom dvoch vektorov, vektorovým sú inom a zmienime sa krátko o orientovanom obsahu a jeho vyuºití. Tento

Podrobnejšie

Microsoft Word - 6 Výrazy a vzorce.doc

Microsoft Word - 6 Výrazy a vzorce.doc 6 téma: Výrazy a vzorce I Úlohy na úvod 1 1 Zistite definičný obor výrazu V = 4 Riešte sústavu 15 = 6a + b, = 4a c, 1 = 4a + b 16c Rozložte na súčin výrazy a) b 4 a 18, b) c 5cd 10c d +, c) 6 1 s + z 4

Podrobnejšie

2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom

2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom 2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom l nazývame dotyčnicou krivky f v bode P. Pre daný bod

Podrobnejšie

Príspevok k modelovaniu a riadeniu robotických systémov s využitím metód umelej inteligencie

Príspevok k modelovaniu a riadeniu robotických systémov s využitím metód umelej inteligencie PRÍSPEVOK K HYBRIDNÝM MODELOM KYBER-FYZIKÁLNYCH SYSTÉMOV A ICH IMPLEMENTÁCIA DO DISTRIBUOVANÉHO SYSTÉMU RIADENIA TUKE FEI KKUI školiteľ: Ing. Dominik Vošček doc. Ing. Anna Jadlovská, PhD. 14.3.2017 ČLENENIE

Podrobnejšie

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE Ekonomická a nan ná matematika Asymptotické metódy oce ovania ázijských ty

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE Ekonomická a nan ná matematika Asymptotické metódy oce ovania ázijských ty FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE Ekonomická a nan ná matematika Asymptotické metódy oce ovania ázijských typov nan ných derivátov DIPLOMOVÁ PRÁCA Diplomant: Lenka

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY ANALÝZA A NÁVRH NUMERICKÝCH ALGORITMOV NA RIE ENIE NELINEÁRNYCH ROVNÍC BLA

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY ANALÝZA A NÁVRH NUMERICKÝCH ALGORITMOV NA RIE ENIE NELINEÁRNYCH ROVNÍC BLA UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY ANALÝZA A NÁVRH NUMERICKÝCH ALGORITMOV NA RIE ENIE NELINEÁRNYCH ROVNÍC BLACK - SCHOLESOVHO TYPU DIPLOMOVÁ PRÁCA 2012 Bc. Jana

Podrobnejšie

III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) Matematická analýza IV (ÚMV/MAN2d/10) RNDr. Lenka Halčinová, PhD.

III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) Matematická analýza IV (ÚMV/MAN2d/10) RNDr. Lenka Halčinová, PhD. III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) (ÚMV/MAN2d/10) lenka.halcinova@upjs.sk 11. apríla 2019 3.3 Derivácia v smere, vzt ah diferenciálu, gradientu a smerovej

Podrobnejšie

Axióma výberu

Axióma výberu Axióma výberu 29. septembra 2012 Axióma výberu Axióma VIII (Axióma výberu) ( S)[( A S)(A ) ( A S)( B S)(A B A B = ) ( V )( A S)( x)(v A = {x})] Pre každý systém neprázdnych po dvoch disjunktných množín

Podrobnejšie

Základné stochastické procesy vo financiách

Základné stochastické procesy vo financiách Technická Univerzita v Košiciach Ekonomická fakulta 20. Január 2012 základné charakteristiky zmena hodnoty W t simulácia WIENEROV PROCES základné charakteristiky základné charakteristiky zmena hodnoty

Podrobnejšie

9. Elastické vlastnosti kry²tálov Cie om tejto predná²ky je zhrnú základné poznatky z mechaniky kontinua. Úlohou je ur i, ako sa deformuje daný kus lá

9. Elastické vlastnosti kry²tálov Cie om tejto predná²ky je zhrnú základné poznatky z mechaniky kontinua. Úlohou je ur i, ako sa deformuje daný kus lá 9. Elastické vlastnosti kry²tálov Cie om tejto predná²ky je zhrnú základné poznatky z mechaniky kontinua. Úlohou je ur i, ako sa deformuje daný kus látky pri zadaných mechanických pôsobeniach. Budeme predpoklada,

Podrobnejšie

Operačná analýza 2

Operačná analýza 2 Krivky (čiary) Krivku môžeme definovať: trajektória (dráha) pohybujúceho sa bodu, jednoparametrická sústava bodov charakterizovaná určitou vlastnosťou,... Krivky môžeme deliť z viacerých hľadísk, napr.:

Podrobnejšie

Prenosový kanál a jeho kapacita

Prenosový kanál a jeho kapacita Prenosový kanál a jeho kapacita Stanislav Palúch Fakulta riadenia a informatiky, Žilinská univerzita 5. mája 2011 Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Prenosový kanál a

Podrobnejšie

Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú in

Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú in Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú intuitívne jasné a názorné napr. prirodzené čísla, zlomok,

Podrobnejšie

Lorentzova sila a jej (zov²eobecnená") potenciálna energia Marián Fecko KTF&DF, FMFI UK, Bratislava Na predná²ke sme sa dozvedeli, ºe Lorentzova sila

Lorentzova sila a jej (zov²eobecnená) potenciálna energia Marián Fecko KTF&DF, FMFI UK, Bratislava Na predná²ke sme sa dozvedeli, ºe Lorentzova sila Lorentzova sila a jej (zov²eobecnená") potenciálna energia Marián Fecko KTF&DF, FMFI UK, Bratislava Na predná²ke sme sa dozvedeli, ºe Lorentzova sila (pôsobiaca na bodový náboj e v danom elektrickom a

Podrobnejšie

MO_pred1

MO_pred1 Modelovanie a optimalizácia Ľudmila Jánošíková Katedra dopravných sietí Fakulta riadenia a informatiky Žilinská univerzita, Žilina Ludmila.Janosikova@fri.uniza.sk 041/5134 220 Modelovanie a optimalizácia

Podrobnejšie

BRKOS

BRKOS Pomocný text Výroková logika autor: Viki Logika je nástroj, ktorý nám umoº uje matematicky uvaºova o veciach okolo nás. Dovo uje nám formalizova tvrdenia, ktoré chceme dokáza a zárove formalizova samotný

Podrobnejšie

Teória pravdepodobnosti Zákony velkých císel

Teória pravdepodobnosti Zákony velkých císel 10. Zákony veľkých čísel Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. apríla 2014 1 Zákony veľkých čísel 2 Centrálna limitná veta Zákony veľkých čísel Motivácia

Podrobnejšie

O možnosti riešenia deformácie zemského povrchu z pohladu metódy konecných prvkov konference pro studenty matematiky

O možnosti riešenia deformácie zemského povrchu z pohladu metódy konecných prvkov konference pro studenty matematiky O možnosti riešenia deformácie zemského povrchu z pohľadu metódy konečných prvkov 19. konference pro studenty matematiky Michal Eliaš ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Katedra matematiky 7. 9. 6. 2011

Podrobnejšie

Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava Podobnos slov (Diplomová práca) Martin Vl ák Vedúci: RN

Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava Podobnos slov (Diplomová práca) Martin Vl ák Vedúci: RN Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava Podobnos slov (Diplomová práca) Martin Vl ák Vedúci: RNDr. Michal Forí²ek Phd. Bratislava, 2011 ii Martin

Podrobnejšie

Biharmonická rovnica - ciže co spôsobí pridanie jedného laplasiánu

Biharmonická rovnica - ciže co spôsobí pridanie jedného laplasiánu iºe o spôsobí pridanie jedného laplasiánu tyc struna Obsah ƒo je to biharmonická rovnica 2 Malý výlet do teórie pruºnosti 3 Rovnice, okrajové podmienky, rie²enia 4... a kde ostala matematická fyzika? ƒo

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY BAKALÁRSKA PRÁCA Bratislava 2011 Roman Kukumberg

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY BAKALÁRSKA PRÁCA Bratislava 2011 Roman Kukumberg UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY BAKALÁRSKA PRÁCA Bratislava 2011 Roman Kukumberg Proximal-gradient, metóda konvexného programovania BAKALÁRSKA PRÁCA Roman Kukumberg

Podrobnejšie

ARMA modely čast 3: zmiešané modely (ARMA) Beáta Stehlíková Časové rady, FMFI UK ARMA modely časť 3: zmiešané modely(arma) p.1/30

ARMA modely čast 3: zmiešané modely (ARMA) Beáta Stehlíková Časové rady, FMFI UK ARMA modely časť 3: zmiešané modely(arma) p.1/30 ARMA modely čast 3: zmiešané modely (ARMA) Beáta Stehlíková Časové rady, FMFI UK ARMA modely časť 3: zmiešané modely(arma) p.1/30 ARMA modely - motivácia I. Odhadneme ACF a PACF pre dáta a nepodobajú sa

Podrobnejšie

Vzt'ah tenzorov T ij a σ ij v mechanike tekutín Marián Fecko KTF&DF, FMFI UK, Bratislava Ciel'om je pozriet' sa vzt'ah tenzorov T ij a σ ij. Oba súvis

Vzt'ah tenzorov T ij a σ ij v mechanike tekutín Marián Fecko KTF&DF, FMFI UK, Bratislava Ciel'om je pozriet' sa vzt'ah tenzorov T ij a σ ij. Oba súvis zt'ah tenzorov T ij a σ ij v mechanike tekutín Marián Fecko KTF&DF, FMFI UK, Bratislava Ciel'om je pozriet' sa vzt'ah tenzorov T ij a σ ij. Oba súvisia s bilanciou hybnosti tekutiny. Táto bilancia sa dá

Podrobnejšie

Pokrocilé programovanie XI - Diagonalizácia matíc

Pokrocilé programovanie XI - Diagonalizácia matíc Pokročilé programovanie XI Diagonalizácia matíc Peter Markoš Katedra experimentálnej fyziky F2-523 Letný semester 2015/2016 Obsah Fyzikálne príklady: zviazané oscilátory, anizotrópne systémy, kvantová

Podrobnejšie

Experimentálna identifikácia nelineárneho dynamického systému pomocou

Experimentálna identifikácia nelineárneho dynamického systému pomocou Experimentálna identifikácia nelineárneho dynamického systému pomocou IDENT Tool v prostredí Matlab Jakub ČERKALA, Anna JADLOVSKÁ Katedra kybernetiky a umelej inteligencie, Fakulta elektrotechniky a informatiky,

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY VALUE-AT-RISK A CONDITIONAL VALUE-AT-RISK AKO NÁSTROJE NA MERANIE RIZIKA P

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY VALUE-AT-RISK A CONDITIONAL VALUE-AT-RISK AKO NÁSTROJE NA MERANIE RIZIKA P UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY VALUE-AT-RISK A CONDITIONAL VALUE-AT-RISK AKO NÁSTROJE NA MERANIE RIZIKA PORTFÓLIA DIPLOMOVÁ PRÁCA 2016 Bc. Michaela JA URKOVÁ

Podrobnejšie

Viacrozmerné úlohy RBC-typu

Viacrozmerné úlohy RBC-typu Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava Viacrozmerné úlohy RBC-typu (Diplomová práca) Bc. Vladimír Balla tudijný odbor: Ekonomická a nan ná matematika Vedúci práce: Prof.

Podrobnejšie

Študijný program (Študijný odbor) Školiteľ Forma štúdia Téma Požiadavky na prijatie Výzbroj a technika ozbrojených síl (8.4.3 Výzbroj a technika ozbro

Študijný program (Študijný odbor) Školiteľ Forma štúdia Téma Požiadavky na prijatie Výzbroj a technika ozbrojených síl (8.4.3 Výzbroj a technika ozbro (8.4.3 ) doc. Ing. Martin Marko, CSc. e mail: martin.marko@aos.sk tel.:0960 423878 Elektromagnetická kompatibilita mobilných platforiem komunikačných systémov. Zameranie: Analýza metód a prostriedkov vedúcich

Podrobnejšie

1. KOMPLEXNÉ ČÍSLA 1. Nájdite výsledok operácie v tvare x+yi, kde x, y R. a i (5 2i)(4 i) b. i(1 + i)(1 i)(1 + 2i)(1 2i) (1 7i) c. (2+3i) a+bi d

1. KOMPLEXNÉ ČÍSLA 1. Nájdite výsledok operácie v tvare x+yi, kde x, y R. a i (5 2i)(4 i) b. i(1 + i)(1 i)(1 + 2i)(1 2i) (1 7i) c. (2+3i) a+bi d KOMPLEXNÉ ČÍSLA Nájdite výsledok operácie v tvare xyi, kde x, y R 7i (5 i)( i) i( i)( i)( i)( i) ( 7i) (i) abi a bi, a, b R i(i) 5i Nájdite x, y R také, e (x y) i(x y) = i (ix y)(x iy) = i y ix x iy i

Podrobnejšie

4. Pravidlo ret azenia. Často sa stretávame so skupinami premenných, ktoré zložitým spôsobom závisia od iných skupín premenných. Pravidlo ret azenia p

4. Pravidlo ret azenia. Často sa stretávame so skupinami premenných, ktoré zložitým spôsobom závisia od iných skupín premenných. Pravidlo ret azenia p 4. Pravidlo ret azenia. Často sa stretávame so skupinami premenných, ktoré zložitým spôsobom závisia od iných skupín premenných. Pravidlo ret azenia pre funkcie viacerých premenných je univerzálna metóda,

Podrobnejšie

Matematika 2 - cast: Funkcia viac premenných

Matematika 2 - cast: Funkcia viac premenných Matematika 2 časť: Funkcia viac premenných RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Spojitosť

Podrobnejšie

Matematický model činnosti sekvenčného obvodu 7 MATEMATICKÝ MODEL ČINNOSTI SEKVENČNÉHO OBVODU Konečný automat predstavuje matematický model sekvenčnéh

Matematický model činnosti sekvenčného obvodu 7 MATEMATICKÝ MODEL ČINNOSTI SEKVENČNÉHO OBVODU Konečný automat predstavuje matematický model sekvenčnéh 7 MTEMTICKÝ MODEL ČINNOSTI SEKVENČNÉHO OBVODU Konečný automat predstavuje matematický model sekvenčného obvodu. Konečný automat je usporiadaná pätica = (X, S, Y, δ, λ,) (7.) kde X je konečná neprázdna

Podrobnejšie

Autoregresné (AR) procesy Beáta Stehlíková Časové rady, FMFI UK Autoregresné(AR) procesy p.1/22

Autoregresné (AR) procesy Beáta Stehlíková Časové rady, FMFI UK Autoregresné(AR) procesy p.1/22 Autoregresné (AR) procesy Beáta Stehlíková Časové rady, FMFI UK Autoregresné(AR) procesy p.1/22 Príklad 1 AR(2) proces z prednášky: x t =1.4x t 1 0.85x t 2 +u t V R-ku: korene charakteristického polynómu

Podrobnejšie

Úvod do lineárnej algebry Monika Molnárová Prednášky 2006

Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 1. 3. marca 2006 2. 10. marca 2006 c RNDr. Monika Molnárová, PhD. Obsah 1 Aritmetické vektory a matice 4 1.1 Aritmetické vektory........................

Podrobnejšie

Rozvojom spoločnosti najmä v druhej polovici minulého storočia dochádza čím ďalej tým viac k zásahu človeka do životného prostredia

Rozvojom spoločnosti najmä v druhej polovici minulého storočia dochádza  čím ďalej tým viac k zásahu človeka do životného prostredia 3 Prenos hmoty a energie 3.1 Stacionárny prípad 1. Prúd vody v rieke s prietokom Qs 10m 3 /s má koncentráciu chloridov cs 20mg/l. Prítok rieky s prietokom Qw 5m 3 /s má koncentráciu chloridov cw 40mg/l.

Podrobnejšie

1 Portál pre odborné publikovanie ISSN Heuristický adaptívny PSD regulátor založený na miere kmitavosti Šlezárová Alexandra Elektrotechnika

1 Portál pre odborné publikovanie ISSN Heuristický adaptívny PSD regulátor založený na miere kmitavosti Šlezárová Alexandra Elektrotechnika 1 Portál pre odborné publikovanie ISSN 1338-0087 Heuristický adaptívny PSD regulátor založený na miere kmitavosti Šlezárová Alexandra Elektrotechnika 28.04.2010 Článok spočíva v predstavení a opísaní algoritmu

Podrobnejšie

Monday 25 th February, 2013, 11:54 Rozmerová analýza M. Gintner 1.1 Rozmerová analýza ako a prečo to funguje Skúsenost nás učí, že náš svet je poznate

Monday 25 th February, 2013, 11:54 Rozmerová analýza M. Gintner 1.1 Rozmerová analýza ako a prečo to funguje Skúsenost nás učí, že náš svet je poznate Monday 25 th February, 203, :54 Rozmerová analýza M. Gintner. Rozmerová analýza ako a prečo to funguje Skúsenost nás učí, že náš svet je poznatel ný po častiach. Napriek tomu, že si to bežne neuvedomujeme,

Podrobnejšie

448pr1.vp

448pr1.vp Faktor a) Pevné aerosóly (prach) 1 ) a) Práce, pri ktorých je expozícia zamestnancov vyššia ako 0,3-násobok najvyššie prípustného expozi ného limitu pre daný druh pevného aerosólu, ale neprekra uje 2.

Podrobnejšie

Microsoft Word - Zaver.pisomka_januar2010.doc

Microsoft Word - Zaver.pisomka_januar2010.doc Písomná skúška z predmetu lgebra a diskrétna matematika konaná dňa.. 00. príklad. Dokážte metódou vymenovaním prípadov vlastnosť: Tretie mocniny celých čísel sú reprezentované celými číslami ktoré končia

Podrobnejšie

Informačná a modelová podpora pre kvantifikáciu prvkov daňovej sústavy SR

Informačná a modelová podpora pre kvantifikáciu prvkov daňovej sústavy SR Nelineárne optimalizačné modely a metódy Téma prednášky č. 5 Prof. Ing. Michal Fendek, CSc. Katedra operačného výskumu a ekonometrie Ekonomická univerzita Dolnozemská 1 852 35 Bratislava Označme ako množinu

Podrobnejšie

Snímka 1

Snímka 1 Fyzika - prednáška 12 Ciele 5. Fyzikálne polia 5.4 Stacionárne magnetické pole 5.5 Elektromagnetické pole Zopakujte si Fyzikálne pole je definované ako... oblasť v určitom priestore, pričom v každom bode

Podrobnejšie

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej matematiky a ²tatistiky Hodnotenie výkonnosti portfóli

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej matematiky a ²tatistiky Hodnotenie výkonnosti portfóli Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej matematiky a ²tatistiky Hodnotenie výkonnosti portfólia Diplomová práca imon HORÁƒEK BRATISLAVA 2010 Univerzita

Podrobnejšie

DP.pdf

DP.pdf UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY KATEDRA APLIKOVANEJ MATEMATIKY A TATISTIKY Krátkodobé efekty dôchodkových ²okov domácností DIPLOMOVÁ PRÁCA Bratislava 2011 Bc.

Podrobnejšie

U N I V E R Z I T A K O M E N S K É H O Fakulta matematiky, fyziky a informatiky Katedra informatiky Vybrané kapitoly z teoretickej informatiky-ii Rie

U N I V E R Z I T A K O M E N S K É H O Fakulta matematiky, fyziky a informatiky Katedra informatiky Vybrané kapitoly z teoretickej informatiky-ii Rie U N I V E R Z I T A K O M E N S K É H O Fakulta matematiky, fyziky a informatiky Katedra informatiky Vybrané kapitoly z teoretickej informatiky-ii Rie²enie aºkých problémov (Pomocné texty k predná²ke 2AIN205)

Podrobnejšie

Cvičenie 9 Riešené príklady 1. Príklad min f(x 1, x 2 ) = x x x 1 s.t. x 1 80 x 1 + x Pre riešenie úlohy vykonáme nasledujúce kroky

Cvičenie 9 Riešené príklady 1. Príklad min f(x 1, x 2 ) = x x x 1 s.t. x 1 80 x 1 + x Pre riešenie úlohy vykonáme nasledujúce kroky Cvičenie 9 Riešené príklady 1. Príklad min f(x 1, x 2 ) = x 2 1 + x2 2 + 60x 1 s.t. x 1 80 x 1 + x 2 120 Pre riešenie úlohy vykonáme nasledujúce kroky: 1. Najskôr upravíme ohraničenia do tvaru a následne

Podrobnejšie

Jozef Kiseľák Sada úloh na precvičenie VIII. 15. máj 2014 A. (a) (b) 1

Jozef Kiseľák Sada úloh na precvičenie VIII. 15. máj 2014 A. (a) (b) 1 Jozef Kiseľák Sada úloh na precvičenie VIII. 15. máj 2014 A. (a) (b) 1 A Pomocou Charpitovej metódy vyriešte rovnicu. x u x + y u y = u u x y u 2 = xy u u x y 3. u 2 y = u y u 4. u 2 x = u x u u x = B.

Podrobnejšie

Snímka 1

Snímka 1 Fyzika - prednáška 11 Ciele 5. Fyzikálne polia 5.2 Elektrostatické pole 5.3 Jednosmerný elektrický prúd Zopakujte si Fyzikálne pole je definované ako... oblasť v určitom priestore, pričom v každom bode

Podrobnejšie

Operačná analýza 2

Operačná analýza 2 Niektoré náhodné procesy majú v praxi veľký význam, pretože sa často vyskytujú, napr.: Poissonov proces proces vzniku a zániku Wienerov proces stacionárne procesy,... Poissonov proces je homogénny Markovov

Podrobnejšie

9. kapitola Maticová algebra II systém lineárnych rovníc, Frobeniova veta, Gaussova eliminačná metóda, determinanty 1. Systém lineárnych rovníc Systém

9. kapitola Maticová algebra II systém lineárnych rovníc, Frobeniova veta, Gaussova eliminačná metóda, determinanty 1. Systém lineárnych rovníc Systém 9. kapitola Maticová algebra II systém lineárnych rovníc, Frobeniova veta, Gaussova eliminačná metóda, determinanty. Systém lineárnych rovníc Systém lineárnych rovníc, ktorý obsahuje m rovníc o n neznámych

Podrobnejšie

Microsoft PowerPoint - Paschenov zakon [Read-Only] [Compatibility Mode]

Microsoft PowerPoint - Paschenov zakon [Read-Only] [Compatibility Mode] Výboje v plynoch, V-A charakteristika Oblasť I. : U => I pri väčšej intenzite poľa (E) je pohyb nosičov náboja k elektródam rýchlejší a tak medzi ich vznikom a neutralizáciou na elektródach uplynie kratší

Podrobnejšie

60. ročník Fyzikálnej olympiády v školskom roku 2018/2019 kategória E okresné kolo Riešenie úloh 1. Zohrievanie vody, výhrevnosť paliva a) Fosílne pal

60. ročník Fyzikálnej olympiády v školskom roku 2018/2019 kategória E okresné kolo Riešenie úloh 1. Zohrievanie vody, výhrevnosť paliva a) Fosílne pal 60. ročník Fyzikálnej olympiády v školskom roku 018/019 kategória E okresné kolo Riešenie úloh 1. Zohrievanie vody, výhrevnosť paliva a) Fosílne palivá: uhlie, nafta, olej, zemný plyn. Propán-bután, lieh,

Podrobnejšie

Úvodná prednáška z RaL

Úvodná prednáška z RaL Rozvrhovanie a logistika Základné informácie o predmete Logistika a jej ciele Štruktúra činností výrobnej logistiky Základné skupiny úloh výrobnej logistiky Metódy používané na riešenie úloh výrobnej logistiky

Podrobnejšie

Vybrané kapitoly zo štatistickej fyziky - domáce úlohy Michal Koval 19. mája 2015 Domáca úloha č. 1 (pochádza z: [3]) Systém pozos

Vybrané kapitoly zo štatistickej fyziky - domáce úlohy Michal Koval 19. mája 2015 Domáca úloha č. 1 (pochádza z: [3]) Systém pozos Vybrané kapitoly zo štatistickej fyziky - domáce úlohy Michal Koval koval@fmph.uniba.sk 19. mája 2015 Domáca úloha č. 1 (pochádza z: [3]) Systém pozostávajúci z N nezávislých spinov. Každý zo spinov sa

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY BEHAVIORÁLNE VPLYVY NA SIETE FINAN NÝCH SUBJEKTOV Diplomová práca 2013 Bc.

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY BEHAVIORÁLNE VPLYVY NA SIETE FINAN NÝCH SUBJEKTOV Diplomová práca 2013 Bc. UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY BEHAVIORÁLNE VPLYVY NA SIETE FINAN NÝCH SUBJEKTOV Diplomová práca 2013 Bc. Michal Mudro UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA

Podrobnejšie

Testy z CSS_2015_16

Testy z CSS_2015_16 Previerkové otázky na skúšku z ČSS 1. Vyjadrite slovne a matematicky princíp superpozície pre lineárnu diskrétnu sústavu. 2. Čo fyzikálne predstavuje riešenie homogénnej a nehomogénnej lineárnej diferenčne

Podrobnejšie

A 1

A 1 Matematika A :: Test na skúške (ukážka) :: 05 Daná je funkcia g : y 5 arccos a) Zistite oblasť definície funkcie b) vyjadrite inverznú funkciu g Zistite rovnice asymptot (so smernicou bez smernice) grafu

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Pouºitie teórie extrémnych hodnôt vo finan níctve DIPLOMOVÁ PRÁCA Bratisla

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Pouºitie teórie extrémnych hodnôt vo finan níctve DIPLOMOVÁ PRÁCA Bratisla UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Pouºitie teórie extrémnych hodnôt vo finan níctve DIPLOMOVÁ PRÁCA Bratislava 2008 Enik Kovácsová UNIVERZITA KOMENSKÉHO V BRATISLAVE

Podrobnejšie

Študijný program (Študijný odbor) Školiteľ Forma štúdia Téma Elektronické zbraňové systémy (8.4.3 Výzbroj a technika ozbrojených síl) doc. Ing. Martin

Študijný program (Študijný odbor) Školiteľ Forma štúdia Téma Elektronické zbraňové systémy (8.4.3 Výzbroj a technika ozbrojených síl) doc. Ing. Martin doc. Ing. Martin Marko, CSc. e-mail: martin.marko@aos.sk tel.: 0960 423878 Metódy kódovania a modulácie v konvergentných bojových rádiových sieťach Zameranie: Dizertačná práca sa bude zaoberať modernými

Podrobnejšie

Operačná analýza 2

Operačná analýza 2 Súradnicové sústavy a zobrazenia Súradnicové sústavy v rovine (E 2 ) 1. Karteziánska súradnicová sústava najpoužívanejšia súradnicová sústava; určená začiatkom O, kolmými osami x, y a rovnakými jednotkami

Podrobnejšie

Slide 1

Slide 1 SÚSTAVA TRANSF. VZŤAHY Plošné, objemové element Polárna Clindrická rcos rsin rcos r sin z z ds rddr dv rddrdz rcossin Sférická r sin sin dv r sin drd d z rcos Viacrozmerné integrál vo fzike Výpočet poloh

Podrobnejšie

9.1 MOMENTY ZOTRVACNOSTI \(KVADRATICKÉ MOMENTY\) A DEVIACNÝ MOMENT PRIEREZU

9.1 MOMENTY ZOTRVACNOSTI \(KVADRATICKÉ MOMENTY\) A DEVIACNÝ MOMENT PRIEREZU Učebný cieľ kapitoly Po preštudovaní tejto kapitoly by ste mali ovládať: Charakteristiku kvadratických momentov prierezových plôch. Ako je definovaný kvadraticky moment plochy k osi a k pólu. Ako je definovaný

Podrobnejšie

Numerické riešenie všeobecnej (klasickej) DMPK rovnice.

Numerické riešenie všeobecnej (klasickej) DMPK rovnice. Numerické riešenie všeobecnej (klasickej) DMPK rovnice. J. Brndiar, R. Derian, P. Markos 11.6.27 1 Úvod Vodivost a transfér matica DMPK vs. zovšeobecnená DMPK rovnica 2 Numerické riešenie Ciel e Predpríprava

Podrobnejšie

Snímka 1

Snímka 1 Fyzika - prednáška 8 Ciele 3. Kmity 3.1 Netlmený harmonický kmitavý pohyb 3. Tlmený harmonický kmitavý pohyb Zopakujte si Výchylka netlmeného harmonického kmitavého pohybu je x = Asin (ω 0 t + φ 0 ) Mechanická

Podrobnejšie

Podpora metód operačného výskumu pri navrhovaní systému liniek doc. RNDr. Štefan PEŠKO, CSc. Katedra matematických metód, Fa

Podpora metód operačného výskumu pri navrhovaní systému liniek doc. RNDr. Štefan PEŠKO, CSc. Katedra matematických metód, Fa Podpora metód operačného výskumu pri navrhovaní systému liniek doc. RNDr. Štefan PEŠKO, CSc. stefan.pesko@fri.uniza.sk Katedra matematických metód, Fakulta riadenia a informatiky, Žilinská univerzita v

Podrobnejšie

Paralelné algoritmy, cast c. 2

Paralelné algoritmy, cast c. 2 Paralelné algoritmy, čast č. 2 František Mráz Kabinet software a výuky informatiky, MFF UK, Praha Paralelné algoritmy, 2009/2010 František Mráz (KSVI MFF UK) Paralelné algoritmy, čast č. 2 Paralelné algoritmy,

Podrobnejšie

448pr1.vp

448pr1.vp Faktor a) Pevné aerosóly (prach) 1 ) a) Práce, pri ktorých je expozícia zamestnancov vyššia ako 0,3-násobok najvyššie prípustného expozi ného limitu pre daný druh pevného aerosólu, ale neprekra uje 2.

Podrobnejšie

Pocítacové modelovanie - Šírenie vln v nehomogénnom prostredí - FDTD

Pocítacové modelovanie  - Šírenie vln v nehomogénnom prostredí - FDTD Počítačové modelovanie Šírenie vĺn v nehomogénnom prostredí - FDTD Peter Markoš Katedra experimentálnej fyziky F2-523 Letný semester 2016/2017 Úvod Hľadáme riešenia časovo závislej parciálnej diferenciálnej

Podrobnejšie

Oceňovanie amerických opcií p. 1/17 Oceňovanie amerických opcií Beáta Stehlíková Finančné deriváty, FMFI UK Bratislava

Oceňovanie amerických opcií p. 1/17 Oceňovanie amerických opcií Beáta Stehlíková Finančné deriváty, FMFI UK Bratislava Oceňovanie amerických opcií p. 1/17 Oceňovanie amerických opcií Beáta Stehlíková Finančné deriváty, FMFI UK Bratislava Oceňovanie amerických opcií p. 2/17 Európske a americké typy derivátov Uvažujme put

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE fakulta matematiky, fyziky a informatiky Aproximácia cien dlhopisov v dvojfaktorových modeloch úrokových mier Diplo

UNIVERZITA KOMENSKÉHO V BRATISLAVE fakulta matematiky, fyziky a informatiky Aproximácia cien dlhopisov v dvojfaktorových modeloch úrokových mier Diplo UNIVERZITA KOMENSKÉHO V BRATISLAVE fakulta matematiky, fyziky a informatiky Aproximácia cien dlhopisov v dvojfaktorových modeloch úrokových mier Diplomová práca 011 Bc. Jana Halga²ová UNIVERZITA KOMENSKÉHO

Podrobnejšie

Princípy tvorby softvéru Modelovanie domény

Princípy tvorby softvéru   Modelovanie domény Princípy tvorby softvéru Robert Luko ka lukotka@dcs.fmph.uniba.sk M-255 Princípy tvorby softvéru ƒo je to doménový model? Doménový model je konceptuálny model (reprezentuje koncepty (entity) a vz ahy medzi

Podrobnejšie

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁ SKÁ PRÁCE Estera Vörösová Stochastické modely pro posloupnosti nervových impuls Katedr

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁ SKÁ PRÁCE Estera Vörösová Stochastické modely pro posloupnosti nervových impuls Katedr Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁ SKÁ PRÁCE Estera Vörösová Stochastické modely pro posloupnosti nervových impuls Katedra pravd podobnosti a matematické statistiky Vedoucí

Podrobnejšie

Analýza sociálnych sietí Geografická lokalizácia krajín EU

Analýza sociálnych sietí  Geografická lokalizácia krajín EU Analýza sociálnych sietí Geografická lokalizácia krajín EU Ekonomická fakulta TU v Košiciach 20. februára 2009 Vzt ahy medzi krajinami - teória grafov Doterajšie riešenia 1 problém farbenia grafov (Francis

Podrobnejšie

2015_URBAN

2015_URBAN TECHNICKÁ UNIVERZITA V KOŠICIACH Strojnícka fakulta prof. Ing. Mária Č a r n o g u r s k á, CSc. Vysokoškolská 4 040 22 Košice O P O N E N T S K Ý P O S U D O K vedeckej a odbornej spôsobilosti vypracovaný

Podrobnejšie

Relačné a logické bázy dát

Relačné a logické bázy dát Unifikácia riešenie rovníc v algebre termov Ján Šturc Zima, 2010 Termy a substitúcie Definícia (term): 1. Nech t 0,..., t n -1 sú termy a f je n-árny funkčný symbol, potom aj f(t 0,..., t n -1 ) je term.

Podrobnejšie

17. medzinárodná vedecká konferencia Riešenie krízových situácií v špecifickom prostredí, Fakulta špeciálneho inžinierstva ŽU, Žilina, máj 2

17. medzinárodná vedecká konferencia Riešenie krízových situácií v špecifickom prostredí, Fakulta špeciálneho inžinierstva ŽU, Žilina, máj 2 17. medzinárodná vedecká konferencia Riešenie krízových situácií v špecifickom prostredí, Fakulta špeciálneho inžinierstva ŽU, Žilina, 30. - 31. máj 2012 ZÁSOBOVANIE VRTUĽNÍKOV VYUŽÍVANÝCH PRI RIEŠENÍ

Podrobnejšie

8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1.2 Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru

8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1.2 Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru 8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1. Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru P platí F B = F A, BD = AE, DG = EG F = G. 1.3 Dokážte

Podrobnejšie

FYZIKA I Rámcove otázky 1998

FYZIKA I Rámcove otázky 1998 Otázky k teoretickej skúške z predmetu Fyzika, ZS 2014/2015 Rámcové otázky: 1. Odvodiť vzťahy pre dráhu, rýchlosť a zrýchlenie pohybu hmotného bodu po priamke,(rovnomerný a rovnomerne zrýchlený pohyb).

Podrobnejšie

Pokrocilé programovanie II - Nelineárne iteracné schémy, chaos, fraktály

Pokrocilé programovanie II - Nelineárne iteracné schémy, chaos, fraktály Pokročilé programovanie II Nelineárne iteračné schémy, chaos, fraktály Peter Markoš Katedra experimentálnej fyziky F2-253 Letný semester 27/28 Obsah Logistická mapa - May Period doubling, podivný atraktor,

Podrobnejšie

Microsoft Word - Zahradnikova_DP.doc

Microsoft Word - Zahradnikova_DP.doc DIPLOMOVÁ PRÁCA Priezvisko a meno: Zahradníková Dáša Rok: 2006 Názov diplomovej práce: Nepriaznivé vplyvy v elektrizačnej sústave harmonické zložky prúdu a napätia Fakulta: elektrotechnická Katedra: výkonových

Podrobnejšie

Funkcie viac premenných

Funkcie viac premenných Funkcie viac premenných January 21, 215 Regulárne zobrazenia Nech je zobrazenie X = Φ(T) dané rovnicami: x 1 = ϕ 1 (t 1, t 2,, t n), x 2 = ϕ 2 (t 1, t 2,, t n), x n = ϕ n(t 1, t 2,, t n), a ak majú funkcie

Podrobnejšie

Základy práce s textovými reťazcami Doteraz sme v MATLABe pracovali s datovými typmi: reálne číslo, vektor, matica. Veľmi dôležitým a často používaným

Základy práce s textovými reťazcami Doteraz sme v MATLABe pracovali s datovými typmi: reálne číslo, vektor, matica. Veľmi dôležitým a často používaným Základy práce s textovými reťazcami Doteraz sme v MATLABe pracovali s datovými typmi: reálne číslo, vektor, matica. Veľmi dôležitým a často používaným dátovým typom je textový reťazec. Ako si môžeme predstaviť

Podrobnejšie

Preco kocka stací? - o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, ked sú velké

Preco kocka stací? - o tom, ako sú rozdelené vlastné hodnoty laplasiánu   v limite, ked sú velké o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, keď sú veľké o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, keď sú veľké zaujímavé, ale len pre matematikov... NIE! o tom, ako

Podrobnejšie

ZBIERKA ZÁKONOV SLOVENSKEJ REPUBLIKY Ročník 2007 Vyhlásené: Časová verzia predpisu účinná od: do: Obsah dokumentu je

ZBIERKA ZÁKONOV SLOVENSKEJ REPUBLIKY Ročník 2007 Vyhlásené: Časová verzia predpisu účinná od: do: Obsah dokumentu je ZBIERKA ZÁKONOV SLOVENSKEJ REPUBLIKY Ročník 2007 Vyhlásené: 28. 9. 2007 Časová verzia predpisu účinná od: 1.11.2016 do: 31. 2018 Obsah dokumentu je právne záväzný. 448 VYHLÁŠKA Ministerstva zdravotníctva

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UƒENIE INVARIANTNÝCH SENZO-MOTORICKÝCH REPREZENTÁCIÍ POHYBOV UCHOPOVANIA P

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UƒENIE INVARIANTNÝCH SENZO-MOTORICKÝCH REPREZENTÁCIÍ POHYBOV UCHOPOVANIA P UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UƒENIE INVARIANTNÝCH SENZO-MOTORICKÝCH REPREZENTÁCIÍ POHYBOV UCHOPOVANIA POMOCOU NEURÓNOVÝCH SIETÍ Diplomová práca 2018 Bc. Jakub

Podrobnejšie

Light transport visualization and preturbations

Light transport visualization and preturbations Light transport visualization and preturbations Martin Pinter Vedúci práce: Prof. RNDr. Roman Ďurikovič, PhD. FMF UK 13. júna 2014 Martin Pinter (FMF UK) Light transport visualization and preturbations

Podrobnejšie

1

1 1. CHARAKTERISTIKA DIGITÁLNEHO SYSTÉMU A. Charakteristika digitálneho systému Digitálny systém je dynamický systém (vo všeobecnosti) so vstupnými, v čase premennými veličinami, výstupnými premennými veličinami

Podrobnejšie

Detekcia akustických udalostí v bezpečnostných aplikáciách

Detekcia akustických udalostí v bezpečnostných aplikáciách TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY KATEDRA ELEKTRONIKY AMULTIMEDIÁLNYCH TECHNOLÓGIÍ Metódy sledovania objektov vo videosekvenciách na báze geometrických vlastností Študijný

Podrobnejšie

Tue Oct 3 22:05:51 CEST Začiatky s jazykom C 2.1 Štruktúra programu Štruktúra programu by sa dala jednoducho popísať nasledovnými časťami, kto

Tue Oct 3 22:05:51 CEST Začiatky s jazykom C 2.1 Štruktúra programu Štruktúra programu by sa dala jednoducho popísať nasledovnými časťami, kto Tue Oct 3 22:05:51 CEST 2006 2. Začiatky s jazykom C 2.1 Štruktúra programu Štruktúra programu by sa dala jednoducho popísať nasledovnými časťami, ktoré si postupne rozoberieme: dátové typy príkazy bloky

Podrobnejšie

geografia.pdf

geografia.pdf Dopravné sektory: subregionalizácia dennej dochádzky na príklade vybraných funk ných mestských regiónov Vladimír Tóth Univerzita Komenského v Bratislave, Prírodovedecká fakulta, Katedra regionálnej geografie,

Podrobnejšie

Snímka 1

Snímka 1 HIERARCHICKÝ LINEÁRNY MODEL PRIDANEJ HODNOTY ŠKOLY VO VZDELÁVANÍ Trajová Jana, Mária Kolková, Pavol Kaclík, Lukáš Píš 20.-21.10.2015, Bratislava Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je

Podrobnejšie

Štruktúra Modelu Výsledky odhadu Záver Trh práce v krajinách strednej Európy: Small Search and Matching Model Martin Železník Národná Banka Slovenska

Štruktúra Modelu Výsledky odhadu Záver Trh práce v krajinách strednej Európy: Small Search and Matching Model Martin Železník Národná Banka Slovenska Trh práce v krajinách strednej Európy: Small Search and Matching Model Národná Banka Slovenska Humusoft, 06.06.2013 Obsah 1 Štruktúra Modelu Domácnosti Firmy Trh práce Nastavenie miezd Uzavretie modelu

Podrobnejšie

JSJA_zbornikFEI2_V2

JSJA_zbornikFEI2_V2 Aplikácia DDE a OPC komunikačných protokolov v identifikácii a riadení reálneho systému Štefan JAJČIŠIN, Anna JADLOVSKÁ Katedra kybernetiky a umelej inteligencie, FEI TU v Košiciach, Slovenská republika

Podrobnejšie

S rok 2 roky t = 4 1 rok MATEMATIKA I A REPETITÓRIUM Z MATEMATIKY pre Hospodársku informatiku Monika Molnárová Košice 2018

S rok 2 roky t = 4 1 rok MATEMATIKA I A REPETITÓRIUM Z MATEMATIKY pre Hospodársku informatiku Monika Molnárová Košice 2018 S 230 280 270 0 1 2 3 4 5 1 rok 2 roky t = 4 1 rok MATEMATIKA I A REPETITÓRIUM Z MATEMATIKY pre Hospodársku informatiku Monika Molnárová Košice 2018 MATEMATIKA I A REPETITÓRIUM Z MATEMATIKY pre Hospodársku

Podrobnejšie

Regulované napájacie zdroje DC AX-3005DBL jednokanálový AX-3005DBL 3-trojkanálový

Regulované napájacie zdroje DC AX-3005DBL jednokanálový AX-3005DBL 3-trojkanálový Regulované napájacie zdroje DC AX-3005DBL jednokanálový AX-3005DBL 3-trojkanálový Návod na obsluhu Kapitola 1. Inštalácia a odporúčania týkajúce sa používania Počas inštalácie napájacieho zdroja bezpodmienečne

Podrobnejšie

Hospodarska_informatika_2015_2016a

Hospodarska_informatika_2015_2016a Gestorská katedra: Študijný program 1. stupňa: Garant študijného programu: KAI FHI EU v Bratislave Hospodárska informatika denné štúdium 1. ročník doc. Ing. Gabriela Kristová, PhD. Bakalárske štúdium -

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MODELOVANIE PRÍJMOV A VÝDAVKOV NA ZDRAVOTNÚ STAROSTLIVOS Diplomová práca B

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MODELOVANIE PRÍJMOV A VÝDAVKOV NA ZDRAVOTNÚ STAROSTLIVOS Diplomová práca B UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MODELOVANIE PRÍJMOV A VÝDAVKOV NA ZDRAVOTNÚ STAROSTLIVOS Diplomová práca Bratislava, 2011 Bc. Jana a ová UNIVERZITA KOMENSKÉHO

Podrobnejšie