Lorentzova sila a jej (zov²eobecnená") potenciálna energia Marián Fecko KTF&DF, FMFI UK, Bratislava Na predná²ke sme sa dozvedeli, ºe Lorentzova sila

Veľkosť: px
Začať zobrazovať zo stránky:

Download "Lorentzova sila a jej (zov²eobecnená") potenciálna energia Marián Fecko KTF&DF, FMFI UK, Bratislava Na predná²ke sme sa dozvedeli, ºe Lorentzova sila"

Prepis

1 Lorentzova sila a jej (zov²eobecnená") potenciálna energia Marián Fecko KTF&DF, FMFI UK, Bratislava Na predná²ke sme sa dozvedeli, ºe Lorentzova sila (pôsobiaca na bodový náboj e v danom elektrickom a magnetickom poli) nemá (oby ajnú") potenciálnu energiu, ale má zov²eobecnenú potenciálnu energiu. Tu sú detaily, ktoré sa na tej predná²ke nestihli. Obsah 1 ƒo je zov²eobecnená potenciálna energia 2 2 Lorentzova sila - najdôleºite²í príklad V om spo íva úloha (ako vlastne znie otázka) Ansatz a hlavný výpo et Na pomoc prichádzajú elektromagnetické potenciály Väzby závislé od asu - iný príklad 6 4 Dodatky 7 A Výpo et sily pre ná² ansatz pre U 7 B ƒo sú elektromagnetické potenciály 8 fecko@fmph.uniba.sk 1

2 1 ƒo je zov²eobecnená potenciálna energia Pripome me si stru ne, o to je zov²eobecnená potenciálna energia. Pracujme uº v jazyku zov²eobecnených súradníc. Pri odvodení Lagrangeovych rovníc (2.druhu") sme pri²li k ich tvaru d T dt q a T q a = Q a a = 1,..., n (1) kde T je kinetická energia sústavy, Q a je a-ta zov²eobecnená sila a n je po et stup ov vol'nosti. ƒasto sa stáva, ºe sa zov²eobecnené sily dajú vyjadrit' v tvare Q a = U(q) q a (2) Vtedy sa tie sily volajú potenciálové (alebo konzervatívne) a funkcia U(q) U(q 1,..., q n ) je (oby ajná") potenciálna energia. Ak sú na²e sily potenciálové, z Lagrangeovych rovníc (1) sa zjavne stanú rovnice d T (T U) dt q a q a = 0 a = 1,..., n (3) Ked'ºe potenciálna energia U(q) závisí len od polohy, ale nie od rýchlosti (teda od q- iek, ale nie od bodkovaných q- iek), môºeme to U(q) pokojne pridat' aj do prvého lena a dostat' d (T U) (T U) dt q a q a = 0 a = 1,..., n (4) (Do rovnice sme tým pridali nulu, takºe sme ju nezmenili.) No a ked' zavedieme Lagrangeovu funkciu (v brandºi lagranºián) ako rozdiel kinetickej a potenciálnej energie L := T U (5) dostaneme kone ný (a najznámej²í) tvar rovníc d L dt q a L = 0 a = 1,..., n (6) qa Tento tvar rovníc je zodpovedný za spústu výhod, ktoré lagranºovský formalizmus poskytuje. (Napríklad za moºnost' získavania zachovávajúcich sa veli ín cez cyklické súradnice. Nájdenie týchto veli ín býva o.i. kl'ú ové pre vyrie²enie rovníc.) Preto sme trochu smutní, ºe sa musíme obmedzit' na triedu silových polí ²truktúry (2). A to najmä po tom, o si uvedomíme, ºe sila, ktorou pôsobí na bodový náboj magnetické pole, vyzerá F = ev B eṙ B(r) F(r, ṙ) U(r) (7) 2

3 Posledná nerovnost' platí preto, lebo gradient funkcie polohy nemá ako získat' závislost' od rýchlosti. Preto sa zamyslíme, i by sa predsa len nedali dostat' do lagranºovského tvaru aj pohybové rovnice pre ²ir²iu triedu silových polí, ako sú polia ²truktúry (2). Zistíme, ºe dajú :-) Ak pôjdeme v na²om odvodení od konca spät', uvedomíme si, ºe rezerva sa skrýva na mieste (4). A to v tom, ºe len, ktorý sme tam pridali ako nulový, by sa tam mohol objavit' aj ako nenulový! Kedy? Keby takýto len bol pôvodne na pravej strane (samozrejme s opa ným znamienkom). ƒiºe keby mala rovnica (1) tvar d T dt q a T q a = Q a = U q a + d U dt q a a = 1,..., n (8) T.j. keby malo silové pole tvar (a nie len (2)). Funkcia Q a = U q a + d U dt q a (9) U = U(q, q) U(q 1,..., q n, q 1,..., q n ) (10) z ktorej sa silové pole Q a (q, q) po íta pomocou zloºitej²ieho vzorca (9) sa volá zov²eobecnená potenciálna energia. (Závisí teda aj od rýchlostí = bodkovaných q- iek, iná by sa (9) redukovalo na (2) :-) Silové polia ²truktúry (9) sú zjavne roz²írením triedy silových polí oproti (oby- ajným") potenciálovým poliam ²truktúry (2). Pritom e²te stále nevy erpávajú v²etky silové polia závislé od rýchlosti (pozri úlohu 3b.3 v [1]). Ostáva teda dúfat', ºe sila od magnetického pol'a v tej roz²írenej triede je. Ak by to bolo tak, celý nápad so zov²eobecnením (2) na (9) by sa zmenil z ne²kodnej akademickej hra ky na dôleºitý nástroj reálnej teoretickej fyziky, ked'ºe málokto asi pochybuje o dôle- ºitosti problému silového pôsobenia (elektrického a) magnetického pol'a na náboje pre reálny svet. 2 Lorentzova sila - najdôleºite²í príklad 2.1 V om spo íva úloha (ako vlastne znie otázka) Lorentzova sila F = e(e + v B) (11) opisuje pôsobenie elektrického a magnetického pol'a (t.j. polí E a B) na bodový náboj e. Závisí od polohy r a asu t náboja (cez polia), ale aj od rýchlosti v ṙ náboja. Podrobnej²í zápis teda vyzerá F(r, t, v) = e(e(r, t) + v B(r, t)) (12) 3

4 Ked'ºe závisí (aj) od rýchlosti, nemôºe byt' (oby ajná") potenciálová. Ale stále je nádej, ºe je aspo zov²eobecnená potenciálová". Na to, aby takou bola, by musela existovat funkcia U(r, t, v) taká, ºe by platilo F = e(e(r, t) + v B(r, t)) = U r + d U dt v (13) Existuje taká funkcia? A ak áno, ako konkrétne vyzerá? Toto je tá otázka z nadpisu. 2.2 Ansatz a hlavný výpo et Kl'ú ovým postrehom pre rie²enie úlohy formulovanej na konci odseku 2.1 je fakt, ºe hl'adaná funkcia môºe byt' nanajvý² lineárna v rýchlosti (pozri tieº úlohu 3b.1 v [1]), t.j. ºe ak vôbec existuje, musí mat' tvar U(r, t, v) = v a(r, t) + f(r, t) (14) pre nejaké vektorové pole a(r, t) a nejaké skalárne pole (funkciu) f(r, t). Ná² ansatz je teda parametrizovaný (zatial' l'ubovol'nými) pol'ami a(r, t) a f(r, t). [Naozaj, keby výraz U/ v v (13) e²te obsahoval rýchlost' v, následné d/dt by z nej urobilo zrýchlenie a = v. Zrýchlenie ale v Lorentzovej sile nie je. (Mimochodom, keby bolo v nejakej sile aj zrýchlenie, Newtonova rovnica m zrýchlenie = sila by mala zrýchlenie na oboch stranách a bolo by to, uznajte, nanajvý² zvlá²tne.) No a na to, aby výraz U/ v uº rýchlost' neobsahoval, môºe samotné U obsahovat' rýchlost' len nanajvý² lineárne, iºe podl'a (14).] Ak je to tak, treba jednoducho vyrátat' pravú stranu v (13) pre ansatz (14) a v kútiku du²e tajne dúfat', ºe existuje taký výber polí a(r, t) a f(r, t), ktorý nám dá l'avú stranu v (13). Ked' sa do výpo tu pravej strany (13) pre ansatz (14) pustíme, dostaneme (pozri Dodatok A): F U r + d U dt v = grad f + ta v rot a (15) Toto sa rovná l'avej strane (13) práve vtedy, ked' platí iºe práve ked' A o s tým? e(e + v B) = grad f + t a v rot a (16) ee = grad f + t a (17) eb = rot a (18) 4

5 Keby sme mali uº za sebou predná²ku Teória elektromagnetického pol'a, vec by bola prakticky vybavená (pozri str. 27 v texte [2]). Vyslovili by sme prakticky reexívne slová skalárny a vektorový potenciál a bolo by vymal'ované". Ked'ºe ju za sebou nemáme (ved' je aº z letného semestra), dozvieme sa o tom potrebné minimum v Dodatku B. (A na vä ²ie podrobnosti, ktoré ale tu nepotrebujeme, si po káme jeden semester.) 2.3 Na pomoc prichádzajú elektromagnetické potenciály Ak vyuºijeme fakt existencie skalárneho a vektorového potenciálu (t.j. rovnice (43) a (44) z Dodatku B) pre polia E a B, z rovníc (17) a (18) sa stanú rovnice e( grad Φ t A) = grad f + t a (19) e(rot A) = rot a (20) No a odtial' uº je vyloºene t'aºké nepríst' na to, ako treba volit' a a f tak, aby to celé sedelo: a = ea (21) f = eφ (22) takºe (dosadením do (14)) U = e(φ v A) (23) alebo podrobne U(r, t, v) = e(φ(r, t) v A(r, t)) (24) Záver: Lorentzova sila má zov²eobecnenú potenciálnu energiu U a je ou výraz (24). Iná povedané, existuje funkcia U(r, t, v), ktorá vyhovuje podmienke (13) a je daná výrazom (24). Dôsledok: Lagranºián pre pohyb bodového náboja e v elektromagnetickom poli (E, B) vyzerá L(r, t, v) = 1 2 mv2 e(φ(r, t) v A(r, t)) (25) (kde (Φ, A) sú potenciály zodpovedajúce poliam (E, B) vzt'ahmi (43) a (44)) a vedie na (Lorentzovu) pohybovú rovnicu m r = e(e v B) (26) V²imnime si, ºe v rovniciach gurujú priamo polia (E, B), ale v lagranºiáne sa tie polia musia zadat' cez svoje potenciály! Ako sa dá táto (lagranºovská) technika pouºit' na nájdenie zákona zachovania v nejakom konkrétnom elektromagnetickom poli sa dá vidiet' napríklad v úlohe 3b.4 v [1]. 5

6 3 Väzby závislé od asu - iný príklad V úlohe 3b.5 sa dozvedáme nasledujúce pozoruhodné fakty: Ak by vyjadrenia polôh astíc cez zov²eobecnené súradnice záviseli od asu r = r(q, t) (27) (napríklad ak by záviseli od asu väzby 1, ktoré nás priviedli ku kongura nému priestoru; ϕ α ( r, t) = 0 r k (q a, t)), výpo et kinetickej energie dopadne iná, ako sme zvyknutí. Vyjde toto: kde T = 1 2 T ab(q, t) q a q b +A a (q, t) q a + ϕ(q, t) (28) T ab = A a = ϕ = 1 2 N k=1 N k=1 m k r k (q, t) q a r k(q, t) q b (29) r k (q, t) m k q a r k(q, t) t N k=1 m k r k (q, t) t r k(q, t) t ƒo je na tom zaujímavé (a prekvapujúce)? Ked' sa pozrieme na druhý a tretí len v kinetickej energii (28) a porovnáme to s výrazmi (24), (14), vidíme, ºe tieto leny majú ²truktúru (zov²eobecnenej) potenciálnej energie. ƒiºe sa dajú prihodit' k existujúcej potenciálnej energii (ak nejaká bola) a pozerat' sa to celé iná : še kinetická energia je len ten prvý len a tie dva zvy²né sú sú ast'ou potenciálnej energie, ím generujú nejakú dodato nú silu formálne analogickú Lorentzovej sile (t.j. akoby sa to hýbalo v nejakom dodato nom elektrickom a magnetickom poli"). Úloha 3b.9 explicitne potvrdzuje tento obraz (pre prípad, ked' pôvodná potenciálna energia bola nulová, iºe ked' prihodená sila je jediná). Vidíme v nej silu úmernú rýchlosti (analóg magnetickej sily) aj polohe (analóg elektrickej sily). A na záver uº len krátko spome me, ºe dodato né sily, ktoré poznáme z teórie neinerciálnych sústav (tam sa volajú ktívne"), majú tieº takýto charakter. Ak sa jedna sústava hýbe vo i druhej, vzt'ahy medzi súradnicami viazanými na tieto dve sústavy majú tieº v²eobecný charakter (27), takºe kinetická energia v novej sústave bude mat' tieº dodato né leny (²truktúry druhého a tretieho lena v (28)) oproti jej beºnému tvaru". Tieto sa tieº zvyknú prihadzovat' k (pôvodnej) potenciálnej 1 Napríklad ak by sme ²tudovali korálku pohybujúcu sa v gravita nom poli na obru i rovnomerne rotujúcej okolo z-ovej osi alebo kyvadlo s premenlivou d ºkou závesu - úlohy 3b.6 a 3b.7 v [1]. (30) (31) 6

7 energii (takºe na úrovni pohybových rovníc vznikajú dodato né sily). Napríklad Coriolisova sila je lineárna v rýchlosti a je tak analógom magnetickej sily. Zvy²né tri ktívne sily (zotrva ná, Eulerova a odstredivá) sú analógom elektrickej sily. Pod'akovanie akujem. 4 Dodatky A Výpo et sily pre ná² ansatz pre U V tomto odseku uvádzame detaily výpo tu, ktorý stojí za výsledkom (15). Celé to je najlep²ie robit' komponentne (cez indexy). Výraz (14) zapísaný cez indexy vyzerá takto: Potom U = v j a j + f (32) F i = U + d U = U + d x i dt v i x i dt a i (33) Ked'ºe derivovanie podl'a komponent v- ka (t.j. / v i ) sa uº skon ilo (a d'alej sa bude derivovat' len podl'a x i a t), prejdeme k obl'úbenému skrátenému ozna eniu i / x i. Ked' si e²te uvedomíme, o znamená tá úplná asová derivácia d/dt (ºe sa derivuje vo i v²etkým t- kam, teda tým explicitným, ale aj tým skrytým v x i (t)), dostaneme toto F i U + d U = ( grad f + t a) i + v j ( j a i i a j ) (34) x i dt v i Máme U x i + d dt a i = i U + ( j a i )ẋ j + t a i = i (v j a j + f) + ( j a i )v j + t a i = i f + t a i + v j ( j a i i a j ) = ( grad f + t a) i + v j ( j a i i a j ) 7

8 Ked' porovnáme doteraj²í výsledok (34) s tvrdením (15), vidíme, ºe prvá ast' naozaj sedí a o treba e²te overit' je to, i platí A to veru platí. ( v rot a) i = v j ( j a i i a j ) (35) Naozaj, ( v rot a) i = ϵ ijk v j (rot a) k = ϵ ijk v j ϵ klm l a m = v j ϵ ijk ϵ lmk l a m = v j (δ il δ jm δ im δ jl ) l a m = v j ( i a j j a i ) = v j ( j a i i a j ) B ƒo sú elektromagnetické potenciály Svet elektromagnetického pol'a sa riadi Maxwellovými rovnicami. (V podobnom zmysle, ako sa svet mechaniky riadi Newtonovými rovnicami.) Tie sú spolu ²tyri, ale to, o z nich potrebujeme, sa získava len z dvoch z nich. Konkrétne z rovníc Teraz si spomenieme na identity (úloha 0.12 v [1]) rot E + t B = 0 (36) div B = 0 (37) rot grad ψ = 0 pre l'ubovol'né ψ (38) div rot C = 0 pre l'ubovol'né C (39) Podl'a identity (39) je jednou z moºností, pre o platí rovnica (37) to, ºe pole B je rot nejakého vektorového pol'a. A apriori nie je jasné, i to je jediná moºnost', alebo i sa tá rovnica dá splnit' aj nejako iná. V skuto nosti sa ukazuje, ºe to je jediná moºnost'. (Za istých podmienok, diskutovaných napríklad v 9.kapitole knihy [3].) T.j. z rovnice (37) vyplýva, ºe najv²eobecnej²ím rie²ením tejto rovnice je Ak dosadíme (40) do (36), dostaneme B = rot A (40) rot (E + t A) = 0 (41) Podl'a identity (38) je opät' jednou z moºností, pre o platí rovnica (41) to, ºe pole E + t A je grad nejakého skalárneho pol'a. A opät' apriori nie je jasné, i to je jediná moºnost', alebo i sa tá rovnica dá splnit' aj nejako iná. V skuto nosti 8

9 sa opät' ukazuje, ºe to je jediná moºnost'. (Za istých podmienok, diskutovaných napríklad v 9.kapitole knihy [3].) T.j. z rovnice (41) vyplýva, ºe najv²eobecnej²ím rie²ením tejto rovnice je E + t A = grad Φ (42) (znamienko mínus je len konvencia). Ked' spojíme (40) a (42), dostaneme hlavný výsledok: E = grad Φ t A (43) B = rot A (44) Pole Φ sa volá skalárny potenciál a pole A sa volá vektorový potenciál. Vzorce (43) a (44) sa dajú chápat' aj tak, ºe pravé strany sú najv²eobecnej²ie rie²enia rovníc (36) a (37). Iná povedané, v²etky tie maxwellovské polia E a B, ktoré zodpovedajú realite (t.j. vyhovujú Maxwellovým rovniciam), sa dajú vyjadrit' cez potenciály. Literatúra [1] M.Fecko: Teoretická mechanika - Sylabus + príklady (41 strán) [2] M.Mojºi²: TEMPO (Teória elektromagnetického pol'a) (91 strán) [3] M.Fecko: Diferenciálna geometria a Lieove grupy pre fyzikov, Bratislava, Iris 2004 (2.vydanie 2009, 2.opravené vydanie 2018) 9

Vzt'ah tenzorov T ij a σ ij v mechanike tekutín Marián Fecko KTF&DF, FMFI UK, Bratislava Ciel'om je pozriet' sa vzt'ah tenzorov T ij a σ ij. Oba súvis

Vzt'ah tenzorov T ij a σ ij v mechanike tekutín Marián Fecko KTF&DF, FMFI UK, Bratislava Ciel'om je pozriet' sa vzt'ah tenzorov T ij a σ ij. Oba súvis zt'ah tenzorov T ij a σ ij v mechanike tekutín Marián Fecko KTF&DF, FMFI UK, Bratislava Ciel'om je pozriet' sa vzt'ah tenzorov T ij a σ ij. Oba súvisia s bilanciou hybnosti tekutiny. Táto bilancia sa dá

Podrobnejšie

Zadání čtvrté série

Zadání čtvrté série Pomocný text Vektory V na²om pomocnom texte Vás prevedieme postupne afínnou geometriou, skalárnym sú inom dvoch vektorov, vektorovým sú inom a zmienime sa krátko o orientovanom obsahu a jeho vyuºití. Tento

Podrobnejšie

Snímka 1

Snímka 1 Fyzika - prednáška 12 Ciele 5. Fyzikálne polia 5.4 Stacionárne magnetické pole 5.5 Elektromagnetické pole Zopakujte si Fyzikálne pole je definované ako... oblasť v určitom priestore, pričom v každom bode

Podrobnejšie

Základy automatického riadenia - Prednáška 2

Základy automatického riadenia - Prednáška 2 Základy automatického riadenia Predná²ka 2 doc. Ing. Anna Jadlovská, PhD., doc. Ing. Ján Jadlovský, CSc. Katedra kybernetiky a umelej inteligencie Fakulta elektrotechniky a informatiky Technická univerzita

Podrobnejšie

Snímka 1

Snímka 1 Fyzika - prednáška 11 Ciele 5. Fyzikálne polia 5.2 Elektrostatické pole 5.3 Jednosmerný elektrický prúd Zopakujte si Fyzikálne pole je definované ako... oblasť v určitom priestore, pričom v každom bode

Podrobnejšie

Biharmonická rovnica - ciže co spôsobí pridanie jedného laplasiánu

Biharmonická rovnica - ciže co spôsobí pridanie jedného laplasiánu iºe o spôsobí pridanie jedného laplasiánu tyc struna Obsah ƒo je to biharmonická rovnica 2 Malý výlet do teórie pruºnosti 3 Rovnice, okrajové podmienky, rie²enia 4... a kde ostala matematická fyzika? ƒo

Podrobnejšie

FYZIKA I Rámcove otázky 1998

FYZIKA I Rámcove otázky 1998 Otázky k teoretickej skúške z predmetu Fyzika, ZS 2014/2015 Rámcové otázky: 1. Odvodiť vzťahy pre dráhu, rýchlosť a zrýchlenie pohybu hmotného bodu po priamke,(rovnomerný a rovnomerne zrýchlený pohyb).

Podrobnejšie

2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom

2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom 2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom l nazývame dotyčnicou krivky f v bode P. Pre daný bod

Podrobnejšie

Snímka 1

Snímka 1 Fyzika - prednáška 8 Ciele 3. Kmity 3.1 Netlmený harmonický kmitavý pohyb 3. Tlmený harmonický kmitavý pohyb Zopakujte si Výchylka netlmeného harmonického kmitavého pohybu je x = Asin (ω 0 t + φ 0 ) Mechanická

Podrobnejšie

Cvičenie 9 Riešené príklady 1. Príklad min f(x 1, x 2 ) = x x x 1 s.t. x 1 80 x 1 + x Pre riešenie úlohy vykonáme nasledujúce kroky

Cvičenie 9 Riešené príklady 1. Príklad min f(x 1, x 2 ) = x x x 1 s.t. x 1 80 x 1 + x Pre riešenie úlohy vykonáme nasledujúce kroky Cvičenie 9 Riešené príklady 1. Príklad min f(x 1, x 2 ) = x 2 1 + x2 2 + 60x 1 s.t. x 1 80 x 1 + x 2 120 Pre riešenie úlohy vykonáme nasledujúce kroky: 1. Najskôr upravíme ohraničenia do tvaru a následne

Podrobnejšie

BRKOS

BRKOS Pomocný text Výroková logika autor: Viki Logika je nástroj, ktorý nám umoº uje matematicky uvaºova o veciach okolo nás. Dovo uje nám formalizova tvrdenia, ktoré chceme dokáza a zárove formalizova samotný

Podrobnejšie

Pocítacové modelovanie - Šírenie vln v nehomogénnom prostredí - FDTD

Pocítacové modelovanie  - Šírenie vln v nehomogénnom prostredí - FDTD Počítačové modelovanie Šírenie vĺn v nehomogénnom prostredí - FDTD Peter Markoš Katedra experimentálnej fyziky F2-523 Letný semester 2016/2017 Úvod Hľadáme riešenia časovo závislej parciálnej diferenciálnej

Podrobnejšie

Microsoft Word - 6 Výrazy a vzorce.doc

Microsoft Word - 6 Výrazy a vzorce.doc 6 téma: Výrazy a vzorce I Úlohy na úvod 1 1 Zistite definičný obor výrazu V = 4 Riešte sústavu 15 = 6a + b, = 4a c, 1 = 4a + b 16c Rozložte na súčin výrazy a) b 4 a 18, b) c 5cd 10c d +, c) 6 1 s + z 4

Podrobnejšie

4. Pravidlo ret azenia. Často sa stretávame so skupinami premenných, ktoré zložitým spôsobom závisia od iných skupín premenných. Pravidlo ret azenia p

4. Pravidlo ret azenia. Často sa stretávame so skupinami premenných, ktoré zložitým spôsobom závisia od iných skupín premenných. Pravidlo ret azenia p 4. Pravidlo ret azenia. Často sa stretávame so skupinami premenných, ktoré zložitým spôsobom závisia od iných skupín premenných. Pravidlo ret azenia pre funkcie viacerých premenných je univerzálna metóda,

Podrobnejšie

Informačná a modelová podpora pre kvantifikáciu prvkov daňovej sústavy SR

Informačná a modelová podpora pre kvantifikáciu prvkov daňovej sústavy SR Nelineárne optimalizačné modely a metódy Téma prednášky č. 5 Prof. Ing. Michal Fendek, CSc. Katedra operačného výskumu a ekonometrie Ekonomická univerzita Dolnozemská 1 852 35 Bratislava Označme ako množinu

Podrobnejšie

III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) Matematická analýza IV (ÚMV/MAN2d/10) RNDr. Lenka Halčinová, PhD.

III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) Matematická analýza IV (ÚMV/MAN2d/10) RNDr. Lenka Halčinová, PhD. III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) (ÚMV/MAN2d/10) lenka.halcinova@upjs.sk 11. apríla 2019 3.3 Derivácia v smere, vzt ah diferenciálu, gradientu a smerovej

Podrobnejšie

8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1.2 Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru

8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1.2 Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru 8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1. Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru P platí F B = F A, BD = AE, DG = EG F = G. 1.3 Dokážte

Podrobnejšie

Seriál XXXII.II Mechanika, FYKOS

Seriál XXXII.II Mechanika, FYKOS Seriál: Mechanika Úvod Na úvod vás vítam pri čítaní druhej časti seriálu u. Začiatkom druhej série sa ešte raz vrátime k značeniu, kde si rýchlo ukážeme ako fungujú indexy, ktoré nám umožnia písať jednu

Podrobnejšie

Pokrocilé programovanie XI - Diagonalizácia matíc

Pokrocilé programovanie XI - Diagonalizácia matíc Pokročilé programovanie XI Diagonalizácia matíc Peter Markoš Katedra experimentálnej fyziky F2-523 Letný semester 2015/2016 Obsah Fyzikálne príklady: zviazané oscilátory, anizotrópne systémy, kvantová

Podrobnejšie

Kedy sa predné koleso motorky zdvihne?

Kedy sa predné koleso motorky zdvihne? Kedy sa predné koleso motorky zdvihne? Samuel Kováčik Commenius University samuel.kovacik@gmail.com 4. septembra 2013 Samuel Kováčik (KTF FMFI) mat-fyz 4. septembra 2013 1 / 23 Bojový plán Čo budeme chcieť

Podrobnejšie

9. Elastické vlastnosti kry²tálov Cie om tejto predná²ky je zhrnú základné poznatky z mechaniky kontinua. Úlohou je ur i, ako sa deformuje daný kus lá

9. Elastické vlastnosti kry²tálov Cie om tejto predná²ky je zhrnú základné poznatky z mechaniky kontinua. Úlohou je ur i, ako sa deformuje daný kus lá 9. Elastické vlastnosti kry²tálov Cie om tejto predná²ky je zhrnú základné poznatky z mechaniky kontinua. Úlohou je ur i, ako sa deformuje daný kus látky pri zadaných mechanických pôsobeniach. Budeme predpoklada,

Podrobnejšie

O možnosti riešenia deformácie zemského povrchu z pohladu metódy konecných prvkov konference pro studenty matematiky

O možnosti riešenia deformácie zemského povrchu z pohladu metódy konecných prvkov konference pro studenty matematiky O možnosti riešenia deformácie zemského povrchu z pohľadu metódy konečných prvkov 19. konference pro studenty matematiky Michal Eliaš ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Katedra matematiky 7. 9. 6. 2011

Podrobnejšie

Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava Podobnos slov (Diplomová práca) Martin Vl ák Vedúci: RN

Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava Podobnos slov (Diplomová práca) Martin Vl ák Vedúci: RN Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava Podobnos slov (Diplomová práca) Martin Vl ák Vedúci: RNDr. Michal Forí²ek Phd. Bratislava, 2011 ii Martin

Podrobnejšie

000____OBAL1-ZZ s Eurom.vp

000____OBAL1-ZZ s Eurom.vp Slovenská inova ná a energetická agentúra Kód žiadate a : (Vyplní agentúra) ŽIADOS o absolvovanie skúšky odbornej spôsobilosti na výkon innosti energetického audítora pod a 9 ods. 6 zákona. 476/2008 Z.

Podrobnejšie

Úvod do lineárnej algebry Monika Molnárová Prednášky 2006

Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 1. 3. marca 2006 2. 10. marca 2006 c RNDr. Monika Molnárová, PhD. Obsah 1 Aritmetické vektory a matice 4 1.1 Aritmetické vektory........................

Podrobnejšie

Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú in

Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú in Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú intuitívne jasné a názorné napr. prirodzené čísla, zlomok,

Podrobnejšie

Monday 25 th February, 2013, 11:54 Rozmerová analýza M. Gintner 1.1 Rozmerová analýza ako a prečo to funguje Skúsenost nás učí, že náš svet je poznate

Monday 25 th February, 2013, 11:54 Rozmerová analýza M. Gintner 1.1 Rozmerová analýza ako a prečo to funguje Skúsenost nás učí, že náš svet je poznate Monday 25 th February, 203, :54 Rozmerová analýza M. Gintner. Rozmerová analýza ako a prečo to funguje Skúsenost nás učí, že náš svet je poznatel ný po častiach. Napriek tomu, že si to bežne neuvedomujeme,

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Pouºitie teórie extrémnych hodnôt vo finan níctve DIPLOMOVÁ PRÁCA Bratisla

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Pouºitie teórie extrémnych hodnôt vo finan níctve DIPLOMOVÁ PRÁCA Bratisla UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Pouºitie teórie extrémnych hodnôt vo finan níctve DIPLOMOVÁ PRÁCA Bratislava 2008 Enik Kovácsová UNIVERZITA KOMENSKÉHO V BRATISLAVE

Podrobnejšie

Poznámky k cvičeniu č. 2

Poznámky k cvičeniu č. 2 Formálne jazyky a automaty (1) Zimný semester 2017/18 Zobrazenia, obrazy a inverzné obrazy Poznámky k cvičeniu č. 2 Peter Kostolányi 4. októbra 2017 Nech f : X Y je zobrazenie. Obraz prvku x X pri zobrazení

Podrobnejšie

Vzorové riešenia úlohy 4.1 Bodovanie Úvod do TI 2010 Dôvod prečo veľa z Vás malo málo bodov bolo to, že ste sa nepokúsili svoje tvrdenia dokázať, prič

Vzorové riešenia úlohy 4.1 Bodovanie Úvod do TI 2010 Dôvod prečo veľa z Vás malo málo bodov bolo to, že ste sa nepokúsili svoje tvrdenia dokázať, prič Vzorové riešenia úlohy 4.1 Bodovanie Úvod do TI 2010 Dôvod prečo veľa z Vás malo málo bodov bolo to, že ste sa nepokúsili svoje tvrdenia dokázať, pričom to je veľmi dôležitá súčasť úlohy. Body sa udeľovali

Podrobnejšie

Matematika 2 - cast: Funkcia viac premenných

Matematika 2 - cast: Funkcia viac premenných Matematika 2 časť: Funkcia viac premenných RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Spojitosť

Podrobnejšie

DP.pdf

DP.pdf UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY KATEDRA APLIKOVANEJ MATEMATIKY A TATISTIKY Krátkodobé efekty dôchodkových ²okov domácností DIPLOMOVÁ PRÁCA Bratislava 2011 Bc.

Podrobnejšie

U N I V E R Z I T A K O M E N S K É H O Fakulta matematiky, fyziky a informatiky Katedra informatiky Vybrané kapitoly z teoretickej informatiky-ii Rie

U N I V E R Z I T A K O M E N S K É H O Fakulta matematiky, fyziky a informatiky Katedra informatiky Vybrané kapitoly z teoretickej informatiky-ii Rie U N I V E R Z I T A K O M E N S K É H O Fakulta matematiky, fyziky a informatiky Katedra informatiky Vybrané kapitoly z teoretickej informatiky-ii Rie²enie aºkých problémov (Pomocné texty k predná²ke 2AIN205)

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY BAKALÁRSKA PRÁCA Bratislava 2011 Roman Kukumberg

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY BAKALÁRSKA PRÁCA Bratislava 2011 Roman Kukumberg UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY BAKALÁRSKA PRÁCA Bratislava 2011 Roman Kukumberg Proximal-gradient, metóda konvexného programovania BAKALÁRSKA PRÁCA Roman Kukumberg

Podrobnejšie

1 Rekurencie este raz riesenia niektorych rekurencii z cvik. mame danu rekurenciu napr T (n) = at ( n b ) + k. idea postupu je postupne rozpisovat cle

1 Rekurencie este raz riesenia niektorych rekurencii z cvik. mame danu rekurenciu napr T (n) = at ( n b ) + k. idea postupu je postupne rozpisovat cle 1 Rekurencie este raz riesenia niektorych rekurencii z cvik. mame danu rekurenciu napr at b + k. idea postupu je postupne rozpisovat cleny T b... teda T b = at + 1... dokym v tom neuvidime nejaky tvar

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UƒENIE INVARIANTNÝCH SENZO-MOTORICKÝCH REPREZENTÁCIÍ POHYBOV UCHOPOVANIA P

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UƒENIE INVARIANTNÝCH SENZO-MOTORICKÝCH REPREZENTÁCIÍ POHYBOV UCHOPOVANIA P UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UƒENIE INVARIANTNÝCH SENZO-MOTORICKÝCH REPREZENTÁCIÍ POHYBOV UCHOPOVANIA POMOCOU NEURÓNOVÝCH SIETÍ Diplomová práca 2018 Bc. Jakub

Podrobnejšie

Axióma výberu

Axióma výberu Axióma výberu 29. septembra 2012 Axióma výberu Axióma VIII (Axióma výberu) ( S)[( A S)(A ) ( A S)( B S)(A B A B = ) ( V )( A S)( x)(v A = {x})] Pre každý systém neprázdnych po dvoch disjunktných množín

Podrobnejšie

Bariéra, rezonančné tunelovanie Peter Markoš, KF FEI STU February 25, 2008 Typeset by FoilTEX

Bariéra, rezonančné tunelovanie Peter Markoš, KF FEI STU February 25, 2008 Typeset by FoilTEX Bariéra, rezonančné tunelovanie Peter Markoš, KF FEI STU February 25, 28 Typeset by FoilTEX Obsah 1. Prechod potenciálovou bariérou, rezonančná transmisia, viazané stavy. 2. Rozptylová matica S a transfer

Podrobnejšie

Diracova rovnica

Diracova rovnica 3. Štruktúra hadrónov 6. 3. 005 Rozptyl e e dáva: Pre kvadrát modulu amplitúdy fi platí: 8 e θ θ cos sin fi EE (1) Pre jeho účinný prierez dostávame: ( αe ) dσ θ θ cos sin δ ν + de dω kde αe /π, νe E.

Podrobnejšie

Urýchľovačová fyzika (letný semester 2014) vyučujúci: M.Gintner, I.Melo prednáška: 2 hod/týždeň cvičenie: 2 hod/týždeň odporúčaná literatúra: M. Bomba

Urýchľovačová fyzika (letný semester 2014) vyučujúci: M.Gintner, I.Melo prednáška: 2 hod/týždeň cvičenie: 2 hod/týždeň odporúčaná literatúra: M. Bomba Urýchľovačová fyzika (letný semester 214) vyučujúci:, I.Melo prednáška: 2 hod/týždeň cvičenie: 2 hod/týždeň odporúčaná literatúra: M. Bombara, M. Gintner, I. Melo: Invitation to Elementary Particles ISBN

Podrobnejšie

Prenosový kanál a jeho kapacita

Prenosový kanál a jeho kapacita Prenosový kanál a jeho kapacita Stanislav Palúch Fakulta riadenia a informatiky, Žilinská univerzita 5. mája 2011 Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Prenosový kanál a

Podrobnejšie

XXVI b 07 Navrh VZN granty spojene.pdf

XXVI b 07 Navrh VZN granty spojene.pdf Mestská as Bratislava - Ružinov Materiál na rokovanie Miestneho zastupite stva mestskej asti Bratislava Ružinov d a 19. 3. 2014 Návrh všeobecne záväzného nariadenia mestskej asti Bratislava Ružinov...zo

Podrobnejšie

A 1

A 1 Matematika A :: Test na skúške (ukážka) :: 05 Daná je funkcia g : y 5 arccos a) Zistite oblasť definície funkcie b) vyjadrite inverznú funkciu g Zistite rovnice asymptot (so smernicou bez smernice) grafu

Podrobnejšie

1. KOMPLEXNÉ ČÍSLA 1. Nájdite výsledok operácie v tvare x+yi, kde x, y R. a i (5 2i)(4 i) b. i(1 + i)(1 i)(1 + 2i)(1 2i) (1 7i) c. (2+3i) a+bi d

1. KOMPLEXNÉ ČÍSLA 1. Nájdite výsledok operácie v tvare x+yi, kde x, y R. a i (5 2i)(4 i) b. i(1 + i)(1 i)(1 + 2i)(1 2i) (1 7i) c. (2+3i) a+bi d KOMPLEXNÉ ČÍSLA Nájdite výsledok operácie v tvare xyi, kde x, y R 7i (5 i)( i) i( i)( i)( i)( i) ( 7i) (i) abi a bi, a, b R i(i) 5i Nájdite x, y R také, e (x y) i(x y) = i (ix y)(x iy) = i y ix x iy i

Podrobnejšie

Preco kocka stací? - o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, ked sú velké

Preco kocka stací? - o tom, ako sú rozdelené vlastné hodnoty laplasiánu   v limite, ked sú velké o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, keď sú veľké o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, keď sú veľké zaujímavé, ale len pre matematikov... NIE! o tom, ako

Podrobnejšie

Princípy tvorby softvéru Agile, Lean, Lean Startup

Princípy tvorby softvéru   Agile, Lean, Lean Startup Princípy tvorby softvéru lukotka@dcs.fmph.uniba.sk www.dcs.fmph.uniba.sk/~lukotka M-255 Agile software development ƒo hovorí Wikipédia? Agile software development describes an approach to software development

Podrobnejšie

Slide 1

Slide 1 Diferenciálne rovnice Základný jazyk fyziky Motivácia Typická úloha fyziky hľadanie časových priebehov veličín, ktoré spĺňajú daný fyzikálny zákon. Určte trajektóriu telesa rt ( )???? padajúceho v gravitačnom

Podrobnejšie

Viacrozmerné úlohy RBC-typu

Viacrozmerné úlohy RBC-typu Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava Viacrozmerné úlohy RBC-typu (Diplomová práca) Bc. Vladimír Balla tudijný odbor: Ekonomická a nan ná matematika Vedúci práce: Prof.

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY VALUE-AT-RISK A CONDITIONAL VALUE-AT-RISK AKO NÁSTROJE NA MERANIE RIZIKA P

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY VALUE-AT-RISK A CONDITIONAL VALUE-AT-RISK AKO NÁSTROJE NA MERANIE RIZIKA P UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY VALUE-AT-RISK A CONDITIONAL VALUE-AT-RISK AKO NÁSTROJE NA MERANIE RIZIKA PORTFÓLIA DIPLOMOVÁ PRÁCA 2016 Bc. Michaela JA URKOVÁ

Podrobnejšie

Operačná analýza 2

Operačná analýza 2 Súradnicové sústavy a zobrazenia Súradnicové sústavy v rovine (E 2 ) 1. Karteziánska súradnicová sústava najpoužívanejšia súradnicová sústava; určená začiatkom O, kolmými osami x, y a rovnakými jednotkami

Podrobnejšie

Microsoft Word - DEOV.doc

Microsoft Word - DEOV.doc DENNÍK evidencie odborného výcviku kolský rok.../... Názov koly: D E N N Í K evidencie odborného výcviku tudijný u ebný odbor (kód a názov): kolský rok: Ro ník Trieda: Skupina: Po et iakov v skupine: Na

Podrobnejšie

Komplexný informa ný a monitorovací systém Monitorovanie biotopov a druhov európskeho významu Používate ská dokumentácia KIMS modul Mobilná aplikácia

Komplexný informa ný a monitorovací systém Monitorovanie biotopov a druhov európskeho významu Používate ská dokumentácia KIMS modul Mobilná aplikácia Komplexný informa ný a monitorovací systém Monitorovanie biotopov a druhov európskeho významu Používate ská dokumentácia KIMS modul Mobilná aplikácia pre výkon výskytu Programový dokument: Životné prostredie

Podrobnejšie

Podivný mikrosvet Mikuláš Gintner Katedra fyziky Žilinská univerzita 2013 Masterclasses in Physics 2013 M. Gintner

Podivný mikrosvet Mikuláš Gintner Katedra fyziky Žilinská univerzita 2013 Masterclasses in Physics 2013 M. Gintner Podivný mikrosvet Mikuláš Gintner Katedra fyziky Žilinská univerzita 2013 4.júl 2012 oznam oznamobjavu objavunovej novejčastice častice možno možno dlhohľadaný dlhohľadanýkandidát kandidátna na HIGGSov

Podrobnejšie

PowerPoint Presentation

PowerPoint Presentation Vymenujte základné body fyzikálneho programu ktoré určujú metodológiu fyziky pri štúdiu nejakého fyzikálneho systému Ako vyzerá pohybová rovnica pre predpovedanie budúcnosti častice v mechanike popíšte,

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY ANALÝZA A NÁVRH NUMERICKÝCH ALGORITMOV NA RIE ENIE NELINEÁRNYCH ROVNÍC BLA

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY ANALÝZA A NÁVRH NUMERICKÝCH ALGORITMOV NA RIE ENIE NELINEÁRNYCH ROVNÍC BLA UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY ANALÝZA A NÁVRH NUMERICKÝCH ALGORITMOV NA RIE ENIE NELINEÁRNYCH ROVNÍC BLACK - SCHOLESOVHO TYPU DIPLOMOVÁ PRÁCA 2012 Bc. Jana

Podrobnejšie

Úlohy o veľkých číslach 6. Deliteľnosť In: Ivan Korec (author): Úlohy o veľkých číslach. (Slovak). Praha: Mladá fronta, pp Persistent UR

Úlohy o veľkých číslach 6. Deliteľnosť In: Ivan Korec (author): Úlohy o veľkých číslach. (Slovak). Praha: Mladá fronta, pp Persistent UR Úlohy o veľkých číslach 6. Deliteľnosť In: Ivan Korec (author): Úlohy o veľkých číslach. (Slovak). Praha: Mladá fronta, 1988. pp. 68 75. Persistent URL: http://dml.cz/dmlcz/404183 Terms of use: Ivan Korec,

Podrobnejšie

Priebeh funkcie

Priebeh funkcie Technická univerzita Košice monika.molnarova@tuke.sk Obsah 1 Monotónnosť funkcie Lokálne extrémy funkcie Globálne (absolútne) extrémy funkcie Konvexnosť a konkávnosť funkcie Monotónnosť funkcie Monotónnosť

Podrobnejšie

Zámery výskumnovývojových národných projektov MŠVVaŠ SR

Zámery výskumnovývojových národných projektov MŠVVaŠ SR Zámery výskumnovývojových národných projektov MŠVVaŠ SR Základné východiská - nariadenie Európskeho parlamentu a Rady (EÚ) č. 1303/2013 - zákon č. 292/2014 Z. z. o príspevku poskytovanom z európskych štrukturálnych

Podrobnejšie

Experimenty s ekonomickAmi princApmi

Experimenty s ekonomickAmi princApmi Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Mgr. Simona Miklo²ovi ová Autoreferát dizerta nej práce Experimenty s ekonomickými princípmi Vplyv informácií a nákladov na h

Podrobnejšie

Seriál XXXII.IV Mechanika, FYKOS

Seriál XXXII.IV Mechanika, FYKOS Seriál: Mechanika V tejto časti seriálu dokončíme príklad, ktorý sme minule začali - výpočet matematického kyvadla. K tomu ale budeme potrebovať vedieť, čo je to Taylorov rozvoj. Ďalej si ukážeme, ako

Podrobnejšie

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE Ekonomická a nan ná matematika Asymptotické metódy oce ovania ázijských ty

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE Ekonomická a nan ná matematika Asymptotické metódy oce ovania ázijských ty FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE Ekonomická a nan ná matematika Asymptotické metódy oce ovania ázijských typov nan ných derivátov DIPLOMOVÁ PRÁCA Diplomant: Lenka

Podrobnejšie

Predná strana - Druhý Newtonov zákon

Predná strana - Druhý Newtonov zákon Gymnázium arm. gen. L. Svobodu, Komenského 4, 066 01 HUMENNÉ VZDELÁVACIA OBLASŤ: Človek a príroda Predmet: fyzika Učebný materiál: príprava na vyučovaciu hodinu so vzorovým riešením pre učiteľa pracovný

Podrobnejšie

Microsoft Word - skripta3b.doc

Microsoft Word - skripta3b.doc 6. Vlastnosti binárnych relácií V tejto časti sa budeme venovať šiestim vlastnostiam binárnych relácií. Najprv si uvedieme ich definíciu. Reláciu R definovanú v množine M nazývame: a ) reflexívnou, ak

Podrobnejšie

Aplikace matematiky- záverečná práca Juraj Bodík 28. septembra 2017 Definície Žena - objekt ohodnotený celým číslom. Každé dve ženy sa dajú porovnat a

Aplikace matematiky- záverečná práca Juraj Bodík 28. septembra 2017 Definície Žena - objekt ohodnotený celým číslom. Každé dve ženy sa dajú porovnat a Aplikace matematiky- záverečná práca Juraj Bodík 28. septembra 207 Definície Žena - objekt ohodnotený celým číslom. aždé dve ženy sa dajú porovnat a rozlíšit, t.j. žiadne dve nemajú rovanké hodnotenie.

Podrobnejšie

Microsoft Word - MAT_2018_1 kolo.docx

Microsoft Word - MAT_2018_1 kolo.docx Gymnázium Pavla Horova, Masarykova 1, Michalovce Príklady na prijímacie skúšky do 1. ročníka konané dňa 14. mája 2018 MATEMATIKA V úlohách 1) až 8) je práve jedna odpoveď správna. Túto správnu odpoveď

Podrobnejšie

Oceňovanie amerických opcií p. 1/17 Oceňovanie amerických opcií Beáta Stehlíková Finančné deriváty, FMFI UK Bratislava

Oceňovanie amerických opcií p. 1/17 Oceňovanie amerických opcií Beáta Stehlíková Finančné deriváty, FMFI UK Bratislava Oceňovanie amerických opcií p. 1/17 Oceňovanie amerických opcií Beáta Stehlíková Finančné deriváty, FMFI UK Bratislava Oceňovanie amerických opcií p. 2/17 Európske a americké typy derivátov Uvažujme put

Podrobnejšie

Jadrova fyzika - Bc.

Jadrova fyzika - Bc. Základné vlastnosti jadier 1-FYZ-601 Jadrová fyzika ZÁKLADNÉ VLASTNOSTI ATÓMOVÉHO JADRA 3. 10. 2018 Zhrnutie a základné poznatky 2/10 Praktické jednotky v jadrovej fyzike Je praktické využiť pre jednotky

Podrobnejšie

Metódy násobenie v stredoveku

Metódy násobenie v stredoveku 1 Lucia Pekarčíková História matematiky Metódy násobenia v stredoveku (Referát) Lucia Pekarčíková 1.roč. II.stupňa Mat Inf ÚVOD V dobe ranného stredoveku sa v Európe všeobecne nepoužíval abakus, nerobili

Podrobnejšie

Seriál XXXII.I Mechanika, FYKOS

Seriál XXXII.I Mechanika, FYKOS Seriál: Mechanika Úvod Tento rok bude seriál o mechanike. Mechanika je jedna z najstarších častí fyziky a zároveň je prvou fyzikálnou disciplínou, ktorá bola uspokojivo matematicky popísaná. Keďže mechanika

Podrobnejšie

4. MECHANICKÁ PRÁCA, VÝKON A ENERGIA 4 Mechanická práca, výkon a energia Pôsobenie vonkajších síl na hmotné body (telesá), resp. sústavu hmotných bodo

4. MECHANICKÁ PRÁCA, VÝKON A ENERGIA 4 Mechanická práca, výkon a energia Pôsobenie vonkajších síl na hmotné body (telesá), resp. sústavu hmotných bodo 4 Mechanická práca, výkon a energia Pôsobenie vonkajších síl na hmotné body (telesá), resp. sústavu hmotných bodov (telies), môže viesť k zmene ich polohy, pohybového stavu, alebo môže zapríčiniť zmenu

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MODELOVANIE PRÍJMOV A VÝDAVKOV NA ZDRAVOTNÚ STAROSTLIVOS Diplomová práca B

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MODELOVANIE PRÍJMOV A VÝDAVKOV NA ZDRAVOTNÚ STAROSTLIVOS Diplomová práca B UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MODELOVANIE PRÍJMOV A VÝDAVKOV NA ZDRAVOTNÚ STAROSTLIVOS Diplomová práca Bratislava, 2011 Bc. Jana a ová UNIVERZITA KOMENSKÉHO

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY BEHAVIORÁLNE VPLYVY NA SIETE FINAN NÝCH SUBJEKTOV Diplomová práca 2013 Bc.

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY BEHAVIORÁLNE VPLYVY NA SIETE FINAN NÝCH SUBJEKTOV Diplomová práca 2013 Bc. UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY BEHAVIORÁLNE VPLYVY NA SIETE FINAN NÝCH SUBJEKTOV Diplomová práca 2013 Bc. Michal Mudro UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA

Podrobnejšie

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁ SKÁ PRÁCE Estera Vörösová Stochastické modely pro posloupnosti nervových impuls Katedr

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁ SKÁ PRÁCE Estera Vörösová Stochastické modely pro posloupnosti nervových impuls Katedr Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁ SKÁ PRÁCE Estera Vörösová Stochastické modely pro posloupnosti nervových impuls Katedra pravd podobnosti a matematické statistiky Vedoucí

Podrobnejšie

Operačná analýza 2

Operačná analýza 2 Krivky (čiary) Krivku môžeme definovať: trajektória (dráha) pohybujúceho sa bodu, jednoparametrická sústava bodov charakterizovaná určitou vlastnosťou,... Krivky môžeme deliť z viacerých hľadísk, napr.:

Podrobnejšie

Čiastka 265/2007 (656 príloha č. 5)

Čiastka 265/2007 (656 príloha č. 5) NÁVRH NA KOMANDITNEJ SPOLO NOSTI DO OBCHODNÉHO REGISTRA Obchodný register Okresný súd Ulica Obec PS íslo NAVRHOVATE TITUL PRED MENOM MENO PRIEZVISKO/ OBCHODNÉ MENO/NÁZOV TITUL ZA MENOM BYDLISKO/MIESTO

Podrobnejšie

Autoregresné (AR) procesy Beáta Stehlíková Časové rady, FMFI UK Autoregresné(AR) procesy p.1/22

Autoregresné (AR) procesy Beáta Stehlíková Časové rady, FMFI UK Autoregresné(AR) procesy p.1/22 Autoregresné (AR) procesy Beáta Stehlíková Časové rady, FMFI UK Autoregresné(AR) procesy p.1/22 Príklad 1 AR(2) proces z prednášky: x t =1.4x t 1 0.85x t 2 +u t V R-ku: korene charakteristického polynómu

Podrobnejšie

Princípy tvorby softvéru Programovacie paradigmy

Princípy tvorby softvéru   Programovacie paradigmy Princípy tvorby softvéru lukotka@dcs.fmph.uniba.sk www.dcs.fmph.uniba.sk/~lukotka M-255 PTS - ƒo to je programovacia paradigma A programming paradigm is a style, or way, of programming. Paradigm can also

Podrobnejšie

Neineárne programovanie zimný semester 2018/19 M. Trnovská, KAMŠ, FMFI UK 1

Neineárne programovanie zimný semester 2018/19 M. Trnovská, KAMŠ, FMFI UK 1 Neineárne programovanie zimný semester 2018/19 M. Trnovská, KAMŠ, FMFI UK 1 Metódy riešenia úloh nelineárneho programovania využívajúce Lagrangeovu funkciu 2 Veta: Bod ˆx je optimálne riešenie úlohy (U3)

Podrobnejšie

Susedov rozli²ujúci index grafu Bakalárska práca pre ²tudijný program Matematika alebo Ekonomická a nan ná matematika v akademickom roku 2019/20 vedúc

Susedov rozli²ujúci index grafu Bakalárska práca pre ²tudijný program Matematika alebo Ekonomická a nan ná matematika v akademickom roku 2019/20 vedúc Bakalárska práca pre ²tudijný program Matematika alebo Ekonomická a nan ná matematika v akademickom roku 2019/20 vedúci práce pokra ovanie v diplomovej práci vítané G graf, C mnoºina farieb, ϕ : E(G) C

Podrobnejšie

Statika konštrukcií - prednášky

Statika konštrukcií - prednášky PEDAGOGICKÁ DOKUMENTÁCIA PREDMETU Názov : Statika konštrukcií Identifikačné číslo : B-501205 Garantujúca katedra, ústav : Katedra stavebnej mechaniky, Ústav inžinierskeho staviteľstva Študijný odbor :

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY STRIEBORNÁ EKONOMIKA Diplomová práca Bratislava 2012 Bc. Zuzana Benkovská

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY STRIEBORNÁ EKONOMIKA Diplomová práca Bratislava 2012 Bc. Zuzana Benkovská UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY STRIEBORNÁ EKONOMIKA Diplomová práca Bratislava 2012 Bc. Zuzana Benkovská UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY,

Podrobnejšie

OBAL1-ZZ.vp

OBAL1-ZZ.vp Rodné íslo/ íslo povolenia na pobyt VZOR TYP A RO NÉ ZÚ TOVANIE poistného na verejné zdravotné poistenie ( alej len poistné ) zamestnanca za rok 2006 pod a 19 zákona. 580/2004 Z. z. o zdravotnom poistení

Podrobnejšie

Centrum vedecko-technických informácií, Odbor pre hodnotenie vedy, Oddelenie pre hodnotenie publikačnej činnosti Vyhľadávanie a práca so záznamami - C

Centrum vedecko-technických informácií, Odbor pre hodnotenie vedy, Oddelenie pre hodnotenie publikačnej činnosti Vyhľadávanie a práca so záznamami - C Centrum vedecko-technických informácií, Odbor pre hodnotenie vedy, Oddelenie pre hodnotenie publikačnej činnosti Vyhľadávanie a práca so záznamami - CREPČ 2 Manuál pre autorov (aktualizované dňa 18.3.2019)

Podrobnejšie

Microsoft Word - ŠTATÚT RADY ŠKOLY

Microsoft Word - ŠTATÚT  RADY  ŠKOLY TATÚT RADY KOLY pri Základnej kole, Zarevúca18, 034 01 Ru omberok V súlade so zákonom NR SR.596/2003 Z.z. o tátnej správe v kolstve a kolskej samospráve a v súlade s ustanovením 9 ods. 1 vyhlá ky Ministerstva

Podrobnejšie

PowerPoint-Präsentation

PowerPoint-Präsentation Global Payment Plus - phototan Návod na prechod z USB tokenu na phototan Vážení užívatelia, tento návod Vás prevedie niekoľkými jednoduchými krokmi nutnými pre úspešný prechod z USB tokenu na phototan.

Podrobnejšie

Microsoft PowerPoint - Paschenov zakon [Read-Only] [Compatibility Mode]

Microsoft PowerPoint - Paschenov zakon [Read-Only] [Compatibility Mode] Výboje v plynoch, V-A charakteristika Oblasť I. : U => I pri väčšej intenzite poľa (E) je pohyb nosičov náboja k elektródam rýchlejší a tak medzi ich vznikom a neutralizáciou na elektródach uplynie kratší

Podrobnejšie

Bodová častica vo VTR Vladimír Balek Pole bodového náboja. Majme časticu s nábojom q, ktorá sa nachádza v počiatku súradníc. Elektrická intenzita E v

Bodová častica vo VTR Vladimír Balek Pole bodového náboja. Majme časticu s nábojom q, ktorá sa nachádza v počiatku súradníc. Elektrická intenzita E v Bodová častica vo VTR Vladimír Balek Pole bodového náboja. Majme časticu s nábojom q, ktorá sa nachádza v počiatku súradníc. Elektrická intenzita E v priestore okolo častice je daná Gaussovým zákonom E

Podrobnejšie

Microsoft Word - Algoritmy a informatika-priesvitky02.doc

Microsoft Word - Algoritmy a informatika-priesvitky02.doc 3. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi základné formálne prostriedky

Podrobnejšie

Nadpis/Titulok

Nadpis/Titulok Mesačný bulletin NBS, november 2016 Odbor ekonomických a menových analýz Zhrnutie Rýchly odhad HDP v 3Q: Eurozóna: % medzištvrťročne (zachovanie tempa rastu z predchádzajúceho štvrťroka). Slovensko: %

Podrobnejšie

Úroveň strojového kódu procesor Intel Pentium Pamäťový operand Adresovanie pamäte Priama nepriama a indexovaná adresa Práca s jednorozmerným poľom Pra

Úroveň strojového kódu procesor Intel Pentium Pamäťový operand Adresovanie pamäte Priama nepriama a indexovaná adresa Práca s jednorozmerným poľom Pra Úroveň strojového kódu procesor Intel Pentium Pamäťový operand Adresovanie pamäte Priama nepriama a indexovaná adresa Práca s jednorozmerným poľom Praktické programovanie assemblerových funkcií Autor:

Podrobnejšie

448pr1.vp

448pr1.vp Faktor a) Pevné aerosóly (prach) 1 ) a) Práce, pri ktorých je expozícia zamestnancov vyššia ako 0,3-násobok najvyššie prípustného expozi ného limitu pre daný druh pevného aerosólu, ale neprekra uje 2.

Podrobnejšie

Klasické a kvantové vĺny na rozhraniach. Peter Markoš, KF FEI STU April 14, 2008 Typeset by FoilTEX

Klasické a kvantové vĺny na rozhraniach. Peter Markoš, KF FEI STU April 14, 2008 Typeset by FoilTEX Klasické a kvantové vĺny na rozhraniach. Peter Markoš, KF FEI STU April 14, 28 Typeset by FoilTEX Obsah 1. Prechod cez bariéru/vrstvu: rezonančná transmisia 2. Tunelovanie 3. Rezonančné tunelovanie 4.

Podrobnejšie

Hladinové plochy Teória výšok Pravé ortometrické výšky Normálne ortometrické výšky Normálne (Molodenského) výšky Dynamické výšky dw = g dh = konšt. Ro

Hladinové plochy Teória výšok Pravé ortometrické výšky Normálne ortometrické výšky Normálne (Molodenského) výšky Dynamické výšky dw = g dh = konšt. Ro lainové plochy Pravé ortoetrické výšky orálne ortoetrické výšky orálne (Moloenského výšky Dynaické výšky W konšt. Roziel potenciálov voch susených hlainových plôch, viazaný na ich vzialenosť je konštantný

Podrobnejšie

1 Priebeµzné písomné zadanie µc.1. Príklady je potrebné vypoµcíta t, napísa t, a odovzda t, na kontrolu na nasledujúcej konzultácii. Nasledujúce integ

1 Priebeµzné písomné zadanie µc.1. Príklady je potrebné vypoµcíta t, napísa t, a odovzda t, na kontrolu na nasledujúcej konzultácii. Nasledujúce integ Priebeµzné písomné zadanie µc.. Príklady je potrebné vypoµcíta t, napísa t, a odovzda t, na kontrolu na nasledujúcej konzultácii. Nasledujúce integrály vypoµcítajte pomocou základných pravidiel derivovania.

Podrobnejšie

Tue Oct 3 22:05:51 CEST Začiatky s jazykom C 2.1 Štruktúra programu Štruktúra programu by sa dala jednoducho popísať nasledovnými časťami, kto

Tue Oct 3 22:05:51 CEST Začiatky s jazykom C 2.1 Štruktúra programu Štruktúra programu by sa dala jednoducho popísať nasledovnými časťami, kto Tue Oct 3 22:05:51 CEST 2006 2. Začiatky s jazykom C 2.1 Štruktúra programu Štruktúra programu by sa dala jednoducho popísať nasledovnými časťami, ktoré si postupne rozoberieme: dátové typy príkazy bloky

Podrobnejšie

Základné stochastické procesy vo financiách

Základné stochastické procesy vo financiách Technická Univerzita v Košiciach Ekonomická fakulta 20. Január 2012 základné charakteristiky zmena hodnoty W t simulácia WIENEROV PROCES základné charakteristiky základné charakteristiky zmena hodnoty

Podrobnejšie

Strana 5526 Zbierka zákonov č. 590/2003 Čiastka NARIADENIE VLÁDY Slovenskej republiky zo 17. decembra 2003 o skúškach odbornej spôsobilosti pr

Strana 5526 Zbierka zákonov č. 590/2003 Čiastka NARIADENIE VLÁDY Slovenskej republiky zo 17. decembra 2003 o skúškach odbornej spôsobilosti pr Strana 5526 Zbierka zákonov č. 590/2003 Čiastka 241 590 NARIADENIE VLÁDY Slovenskej republiky zo 17. decembra 2003 o skúškach odbornej spôsobilosti príslušníkov obecnej polície a o odbornej príprave príslušníkov

Podrobnejšie

Analýza sociálnych sietí Geografická lokalizácia krajín EU

Analýza sociálnych sietí  Geografická lokalizácia krajín EU Analýza sociálnych sietí Geografická lokalizácia krajín EU Ekonomická fakulta TU v Košiciach 20. februára 2009 Vzt ahy medzi krajinami - teória grafov Doterajšie riešenia 1 problém farbenia grafov (Francis

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Optimálne navrhovanie experimentov DIPLOMOVÁ PRÁCA 2012 Bc. Samuel Zmeko

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Optimálne navrhovanie experimentov DIPLOMOVÁ PRÁCA 2012 Bc. Samuel Zmeko UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Optimálne navrhovanie experimentov DIPLOMOVÁ PRÁCA 2012 Bc. Samuel Zmeko UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY,

Podrobnejšie