straka-ok

Podobné dokumenty
Microsoft Word - HoreckaHrvol.doc

VYHLÁSENIE O PARAMETROCH č SK 1. Jedi eč ý ide tifikač ý k d typu výro ku: Zarážacia kotva fischer EA II 2. )a ýšľa é použitie/použitia: Produkt

Department of Materials Science, Faculty of Metallurgy, Technical University of Košice, Slovak Republic LOCAL MECHANICAL PROPERTIES WHAT DOE S IT MEAN

VYHLÁSENIE O PARAMETROCH č SK 1. Jedi eč ý ide tifikač ý k d typu výro ku: fischer skrutka do betónu ULTRACUT FBS II 2. )a ýšľa é použitie/použi

Work programme – čo to je a ako ho ovplyvním?

SHRNN TECHNICK SPRVA

untitled

FIRE PROTECTION & SAFETY Scientific Journal 12(2): 65 81, 2018 DOI: /delta Analysis of Carbonized Layer of Wood Beams with Differ

untitled

sec pdf (original)

TD2220-1_UG_SLO.pdf

TD2340-1_UG_SLO.pdf

PREHĽAD TRHU NOVÝCH BYTOV NEW APARTMENTS MARKET OVERVIEW

Diploma thesis

ZBIERKA ZÁKONOV SLOVENSKEJ REPUBLIKY Ročník 2017 Vyhlásené: Časová verzia predpisu účinná od: Obsah dokumentu je právne záväzný

Microsoft Word - Hitka - esej2011_06-is-xhitka.doc

Microsoft Word - HANDZAK.DOC

MATERIÁL A€METODIKA EXPERIMENTOV

Microsoft Word - mes_0203.doc

Benchmarking a energetické indikátory v priemysle Pavol Koreň Konferencia priemyselných energetikov, Žilina,

MergedFile

EN 934-2:2009+A1:2012 VYHLÁSENIE O PARAMETROCH PODĽA PRÍLOHY III NARIADENIA (EÚ) č. 305/2011 Sika Viscocrete Ultra č JEDINEČNÝ IDENTI

PREHĽAD TRHU NOVÝCH BYTOV NEW APARTMENTS MARKET OVERVIEW

donic

Prehľad trhu s novými bytmi New Apartments Market Overview Br atisl ava V roku 2013 rástla ponuka aj dopyt, priemerná cena sa takmer nezmenila.

SILVER IN POLAND

5.KHOURI_Publikacie

vaszi-ok

Možnosti hybridného cloudu v podmienkach slovenského egovernmentu Jozef Šuran, SAP Slovensko IDEME 2017

Product Familiy Leaflet: MASTER PL-S 2 kolíkové

sec pdf (original)

ASSESSMENT OF TIME SERIES AND TRENDS

Microsoft Word - visegrad_2011_aug.doc

Príloha č

Microsoft Word - mes_0303.doc

EC design examination certificate in accordance with Annex II, Section 4 of Directive 93/42/EEC As a notified body of the European Union (Reg. No. 012

Microsoft Word - Kovac,Liska,Pecovska.doc

ANALÝZA NITROOXIDICKEJ VRSTVY HLBOKOŤAŽNÝCH PLECHOV S VYUŽITÍM TEM A RTG

UBYTOVANIE KOLDING SCANDINAVIAN study

Trendy a inovatívne prístupy v podnikových procesoch 2017, roč. 20 Trends and Innovative Approaches in Business Processes 2017, Vol. 20 ŽIVOTNÝ CYKLUS

VPLYV TRŽIEB NA VÝSLEDOK HOSPODÁRENIA VO VÝROBNOM PODNIKU

Microsoft Word - 01.doc

VÝROČNÁ SPRÁVA ANNUAL REPORT 2018

Sablona prispevky MSI

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE Číslo 9, ročník 5., vydané v decembri 2017 ISSN Kontakt: tel.: +4

MergedFile

Bez názvu - 1

TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA CITAČNÉ OHLASY NA PUBLIKOVANÉ PRÁCE Ing. Peter IŽOL, PhD. Košice, 2016

Microsoft Word - GALLOVA2

PowerPoint Presentation

Spoločnosť Centrum vzdelávania IMS, s.r.o. ponúka komplexné zabezpečenie konzultačnej činnosti a vzdelávacích programov v oblastiach medzinárodných št

untitled

The17 th International Scientific Conference Trends and Innovative Approaches in Business Processes 2014 VYTVORENIE PROJEKTU DIGITÁLNEHO PODNIKU PROST


Informácia zasielaná občanom štátov EÚ

Čo sa skrývalo za aftóznou stomatitídou

Nové tituly vo fonde AK MTF Apríl 2013 Ďurčík, Miloslav - Gondová, Lenka - Kmeť, Vladimír : Prehľad medzinárodných noriem ISO/IEC podporujúcich implem

Fenológia viniča hroznorodého (Vitis vinifera L

Pacakova.Viera

Snímka 1

KINETICS OF VACUUM DRYING WITH CONVECTIVE HEATING

Prezentácia programu PowerPoint

Sablona prispevky MSI

KINETICS OF VACUUM DRYING WITH CONVECTIVE HEATING

SPRINT 2

KOŠICKÁ BEZPEČNOSTNÁ REVUE KOSICE SECURITY REVUE Vol. 8, No. 1 (2018), p ISSN (print ver.), ISSN (online ver.) Study of a f

Snímka 1

Microsoft Word - Kocian - esej2011_13-is-xkocianr.doc

KINETICS OF VACUUM DRYING WITH CONVECTIVE HEATING

zlom.indd

ABSCHNITT

27Novotny_4

obalka_3riadky_odvetvove_statistiky kopie

The13 th International Scientific Conference Trends and Innovative Approaches in Business Processes 2010 PRÍČINY VZNIKU REKLAMÁCIE A ICH MOŢNÉ RIEŠENI

Microsoft Word - 03 Monka Peter - Zoznam publikačnej činnosti

ABSCHNITT

Terek Milan

ECTS Course Catalogue st Level of University Education (Bc.) 1. Stupeň štúdia (Bc.) Study programme/ Študijný program: Management of Securi

obalka_3riadky_odvetvove_statistiky kopie

tunel_18_2_OK.qxp:tunel_3_06

Trendy a inovatívne prístupy v podnikových procesoch 2017, roč. 20 Trends and Innovative Approaches in Business Processes 2017, Vol. 20 EKOLOGICKÉ INO

F a k u l t a v ý r o b n ý c h t e c h n o l ó g i í T e c h n i c k e j u n i v e r z i t y v K o š i c i a c h s o s í d l o m v P r e š o v e K a

SEPS-VS 2013

Course Guide 2012_08_Sestava 1

v5001s.indd

ABSCHNITT

PREHĽAD TRHU NOVÝCH BYTOV NEW APARTMENTS MARKET OVERVIEW

Vyhlásenie o parametroch Vydanie: Identifikačné č Verzia č. 1 SikaCor VEL EN VYHLÁSENIE O PARA

Prepis:

Acta Metallurgica Slovaca, 15, 2009, 3 (180-186) 180 HEAT TREATING OF CHROME TOOL STEEL BEFORE ELECTROEROSION CUTTING WITH BRASS ELECTRODE Straka Ľ., Čorný I. 1 Department operation of manufacturing process, Faculty of Manufacturing Technologies, Technical University of Košice, Slovakia TEPELNÉ SPRACOVANIE CHRÓMOVEJ NÁSTROJOVEJ OCELE PRED ELEKTROEROZÍVNYM REZANÍM MOSADZNOU ELEKTRÓDOU Straka Ľ., Čorný I. Katedra prevádzky výrobných procesov, Fakulta výrobných technológií, Technická univerzita v Košiciach, Slovensko Abstrakt Príspevok sa zaoberá tepelnou úpravou materiálu určeného pre výrobu strižných nástrojov progresívnou elektroerozívnou metódou obrábania. Hlavným cieľom príspevku je detailne popísať postup tepelného spracovania oceľových blokov z nástrojovej ocele EN ISO 9676 X210Cr12 (STN 19 436) vrátane procesov prebiehajúcich vo vnútri základného materiálu. Z dôvodu priaznivých mechanických vlastností patrí nástrojová oceľ EN ISO 9676 X210Cr12 (STN 19 436) medzi najčastejšie materiály, používané pri výrobe strižných nástrojov. Ide o chrómovú oceľ s vysokou odolnosťou proti opotrebeniu oterom a zároveň odolávajúcu rozmerovým zmenám aj pri zvýšených teplotách. Keďže daný materiál má vysokú pevnosť, možno očakávať aj zvýšené nároky na rezné podmienky. Efektívnou a zároveň v praxi najviac používanou metódou pre výrobu týchto nástrojov sa preto javí elektroerozívne obrábanie, ktoré zaručuje vysokú kvalitu a presnosť obrábania. [1,2] V niektorých prípadoch je prakticky jedinou metódou, ktorou možno vyrobiť komplikované vnútorné tvary strižných nástrojov a dodržať vysokú presnosť kontúry rezu. Zároveň táto metóda nekladie žiadne obmedzenia z hľadiska pevnosti materiálov, pretože k úberu materiálu dochádza elektrickým výbojom nie mechanickým pôsobením rezného nástroja, ako je to u konvenčných spôsobov obrábania. Aby mohli byť splnené všetky kvalitatívne požiadavky, ktoré sú kladené na strižné nástroje, je nevyhnutné pred samotným rezným procesom vykonať tepelnú úpravu polotovaru. Nevhodné, respektíve nekvalitné tepelné spracovanie má výrazný dopad nielen na výslednú kvalitu a presnosť strižného nástroja, ale predovšetkým na jeho životnosť. Navrhnutý postup bol realizovaný na experimentálnom oceľovom bloku v konkrétnych podmienkach firmy, ktorá sa zaoberá výrobou strižných nástrojov. Výsledky experimentu boli verifikované z hľadiska dosiahnutej výslednej kvality tvrdosti základného materiálu po martenzitickom kalení a dvojfázovom popúšťaní vo vákuovej peci metódou Rockwell. Príspevok tiež uvádza možné príčiny vzniku nedostatkov kvality polotovaru vrátane vzniku porúch tepelného spracovania a odporúčaní, ktoré majú zamedziť vznik nepodarkov. Abstract The paper deals with heat treating of material assigned for shearing tools production by progressive electroerosion method of machining. The main aim of the contribution is to

Acta Metallurgica Slovaca, 15, 2009, 3 (180-186) 181 describe in detail the procedure of heat treatment of tool-steel blocks made from steel EN ISO 9676 X210Cr12 (STN 19 436) including processes taking place inside basic material. Because of its favourable mechanical properties, tool steel EN ISO 9676 X210Cr12 (STN 19 436) belongs to materials most used for shearing tools production. It is a chrome steel with high wearresistance, and resistance to dimension variations at high temperatures. Since the given material is of high strength, demanding machining conditions are to be expected too. Effective, and at the same time the most used method for production from this steel appears to be electroerosion machining which ensures high quality and machining precision. [1,2] In certain cases, it is the only method that enables production of complicated internal shapes of shearing tools and keeping of high cut contour precision. In addition, this method does not impose any restrictions concerning material strength, because material removal is carried out by electric discharge, and not by mechanical impact of cutting tool, as it is usual at conventional machining. To satisfy all the quality requirements on shearing tools, it is necessary to apply heat treatment on semiproduct before actual machining process. Unsuitable or low-quality heat treating has significant impact not only on resultant quality and precision of shearing tool, but, above all, on its operating life. Proposed procedure was realized on experimental steel block in particular conditions of company that produces shearing tools. Results of the experiment were verified from the view point of achieved resultant hardness quality of basic material after martensitic quenching and 2- phase tempering in vacuum furnace, applying Rockwell method. The paper also presents possible causes of semiproduct quality insufficiencies including heat treating defects, and gives recommendations for preventing of production wasters. Keywords: Electroerosion Machining, Quenching, Tempering, Heat Treating, Hardness of Surface, Wire Electrical Discharge Machining (WEDM) 1. Introduction into Experimental Heat Treatment Procedure of the Sample In shearing tools manufacturing, it is necessary to prepare basic material block at first. Dimensions of the block represent outer dimensions of the shearing tool. The block can be made by conventional machining, e. g. milling, grinding, etc. [3] Due to rough machining of basic semiproduct, an internal stress in steel block is present. It is necessary to remove this internal stress by interstage annealing, especially after substantial material removals at cutting operations but, first of all, for non-symetric shapes of semiproducts. Concerning tools such as shearing tools that must withstand extreme stress, it is vital to harden semiproducts to high hardness values in order to increase their operating life. However, the quenching causes high internal stress due to different cooling intensities of block surface and block core. This stress must be removed by tempering. Otherwise material deformations could emerge during electroerosion cutting, and in extreme cases, brittle fracture may occur due to extreme internal stress. [3, 4] 2. Annealing of the Sample for Internal Stress Removal The sample (during experiment it was steel block of dimensions 250 x 250 mm, 50 mm thick) was placed into vacuum furnace with temperature 260 C. After equalizing of surface and core temperatures, the furnace temperature was increased to 650 C, with start-up time to annealing temperature 80 min. Then 2 hours holding time followed. The block was then cooling in furnace to 400 C, and next it was cooling to surrounding temperature freely in room air (Fig. 1).

Acta Metallurgica Slovaca, 15, 2009, 3 (180-186) 182 700 600 Annealing point ( C) 500 400 300 200 100 0 0 100 200 300 400 500 600 Time of annealing (min) Fig.1 Time course of block with tool steel EN ISO 9676 X210Cr12 annealing To prevent decarburization of sample surface, the annealing was carried out in vacuum furnace. As an alternative, annealing in inert atmosphere can be applied. 3. Quenching of the Sample for Basic Material Hardness Increase Heating up of the block to quenching temperature was done this way: the block was placed into the cooled-down vacuum furnace and heated up by heating rate 220 C.h -1 to 850 C with holding time until temperatures equalized through the whole cross-section. From the temperature of the last pre-heating, rapid heating to quenching temperature was applied. When quenching temperature on the surface was reached, holding time approx. 70 min. followed in order to equalize temperatures of the surface and of the core of the steel block. Immediately after temperature equalizing of the surface and of the core, rapid cooling followed before the surface temperature could drop below 960 C. Quenching medium was oil with temperature 80 100 C, which is the only possibility to achieve sufficient cooling rate especially in blocks of substantial thickness. In this case, air-flow quenching cannot be applied because in blocks of dimensions above 200 x 120 mm or diameters above 160 mm with maximum cooling air pressure of 1 MPa, the precipitation of carbides on austenite grain edges or ferrite grain edges would occur, depending on cooling rate and steel chemical composition. This would eventually lead to deterioration of material mechanical properties. Fig.2 Dependence of Resultant Hardness of Steel Block (Material EN ISO 9676 X210Cr12) on Quenching Temperature

Acta Metallurgica Slovaca, 15, 2009, 3 (180-186) 183 From the diagram obtained in experiment (Fig. 2) it can be concluded that the highest hardness of EN ISO 9676 X210Cr12 steel can be reached at quenching temperature of approx. 960 C. Since during experiment quenching temperature 1020 C was applied, it can be assumed that resultant hardness after quenching will range in 63 64 HRC. In order to achieve optimal steel structure and thus optimal mechanical properties, it was inevitable to cool the block with maximum possible rate, taking into account block shape and its possible deformations, and also CCT (Continuous Cooling Transformation) diagram. To ensure these requirements, oil was applied as a cooling medium. Following figure presents three alternatives of cooling rates during quenching of EN ISO 9676 X210 CR12 steel in order to achieve resultant martensitic structure. The cooling rates courses are drawn into CCT diagram for a given steel. Fig.3 Influence of Quenching Rate on Structure Change of EN ISO 9676 X210Cr12 Steel in CCT Diagram Line I in diagram shows continuous course of quenching. Transition through temperatures Ms and Mf is sharp, with consequence of enormous stress inside material. Line II shows broken course of quenching, where at first, rapid cooling to temperature closely above Ms is applied, then the intensity of cooling decreases, this leads to a decrease of internal stress. Line III shows course of so-called martempering, in which the first phase of cooling is identical to the previous two courses. When the hardened material temperature closely above Ms is reached, constant temperature is held for a certain time in order to equalize temperatures on surface and in hardened material core. Holding time for EN ISO 9676 X210Cr12 material must not exceed 30 min., otherwise structural change from austenite to bainite would occur. The importance of the latter quenching procedure is essential mainly in such demanding products as moulds, shearing tools, etc. On the basis of these facts, sufficiently high cooling rate was chosen particularly in first phase of quenching, to ensure formation of hard martensitic structure. Otherwise bainite would form, this would deteriorate mechanical properties. From the mentioned possibilities, the most effective quenching procedure appears to be III (the third) way of quenching, because of low chance of quenching cracks. When surface temperature of steel block reached the range 450 400 C, cooling intensity was decreased for 30 min. in order to equalize surface and core temperatures. Temperature difference between the surface and the core should not exceed 95 C during quenching.

Acta Metallurgica Slovaca, 15, 2009, 3 (180-186) 184 4. Tempering of the Sample for Removal of Internal Stress after Quenching Directly before electroerosion, it is necessary to temper the metal block in order to reduce brittleness caused by martensitic quenching. Tempering is based on partial structural change of the material and is accompanied by undesirable phenomenon: hardness decrease of basic material. Minimal hardness decrease of tool steel EN ISO 9676 X210Cr12 occurs at tempering temperature up to 180 C, when tetragonal martensite transforms into cubic martensite. Applying of temperatures ranging from 180 C to 300 C causes significant decrease of material brittleness as a result of residual austenite transformation into ferrite. At temperatures above 300 C, extreme brittleness drop occurs accompanied with significant hardness decrease of basic material as a consequence of total martensite decomposition into fine ferritic structure. From the viewpoint of optimal ratio of hardness and brittleness decrease of basic material, it is appropriate to apply tempering temperature 220 C. For experimental steel block with tool steel EN ISO 9676 X210Cr12, 2-phase tempering at the same temperature (220 C) was applied, whilst this temperature was chosen with regard of measured hardness after quenching and after first tempering. In the same way as in quenching, also during tempering it is inevitable to protect material surface from decarburization and oxidation in vacuum furnace or by inert atmosphere. Fig.4 Dependence Diagram of Resultant Basic Material (Steel X210Cr12) Hardness Value HRC after Tempering on Tempering Temperature From the diagram obtained in experiment it can be concluded that the highest hardness value of steel block basic material EN ISO 9676 X210Cr12 can be achieved by tempering if it was hardened at 1060 C. At the experiment, lower quenching temperature was applied (approx. 1020 C), so expected resultant hardness after tempering is approx. 58 HRC. Hardness of basic material after tempering (for removal of internal stress after quenching) drops approx. by 5 HRC. 5. Experimental Verification of Heat Treating Results Metal block hardness test after quenching at 1020 C and 2-phase tempering at 220 C was carried out by Rockwell method. [6] Following figure shows placements of hardness testing spots on experimental sample. Following table presents measured values of basic material hardness of the sample made from tool steel EN ISO 9676 X210Cr12 after martensitic quenching and 2-phase

Acta Metallurgica Slovaca, 15, 2009, 3 (180-186) 185 tempering. Overall course of hardness changes of experimental sample basic material during all heat-treatment phases is recorded in figure 5. Testing spot No. 1 Testing spot No. 2 Testing spot No. 3 Testing spot No. 4 Testing spot No. 5 Testing spot No. 6 Fig.5 Experimental Hardness Measurement after Quenching and Tempering of Steel Block EN ISO 9676 X210Cr12 Table 1 Sample Hardness Values Measured after Quenching and Tempering Hardness values HRC of basic material Testing spot After 1st After 2nd After quenching tempering tempering No. 1 65 62 60 No. 2 64 61 59 No. 3 65 62 59 No. 4 65 62 60 No. 5 64 61 59 No. 6 65 61 59 Mean values 64,6 61,5 59,3 Hardness of basic material HRC 70 60 50 40 30 20 10 0 cutting annealing martensitic quenching first tempering Phases of heat treatement second tempering Fig.6 Hardness Course in Particular Phases of Heat Treatment of Steel Block Made from Tool Steel X210Cr12 From the diagram we can see hardness growth after martensitic quenching at 1020 C by 39,6 HRC. In order to remove internal stress, 2-phase tempering at 220 C was applied. This decreased internal stress after quenching, however, it also caused mild decrease of basic material hardness. In the first phase the decrease was 3,1 HRC, in the second phase 2,2 HRC. 6. Conclusions and Discussions of Experiment Results The paper presents results of the proposal for tool steel EN ISO 9676 X210Cr12 heat treating. This material is assigned for shearing tools production by electroerosion machining.

Acta Metallurgica Slovaca, 15, 2009, 3 (180-186) 186 Selection of the material for the experiment was based on its mechanical properties, and on practical experience of tool smiths who use this material often in shearing tools production. [7] The paper describes in detail particular phases of heat treating of experimental steel block: annealing, quenching, and tempering. Proposed procedure takes into account specifics of shearing tools production by electroerosion machining technology that imposes high quality requirements on semiproducts heat treatment. In the first phase of sample heat treatment, annealing for removal of cutting-caused stress was proposed. Since shearing tools must have high hardness of basic material through the whole cross-section, the most suitable was application of martensitic quenching at 1020 C. To ensure that required hardness will be reached, i. e. that austenite will transform into martensite, it was necessary to guarantee intensive enough cooling of material during quenching. Certain risk in this intensive and at the same time non-controlled cooling is posed by material thermal expansion which generates extreme internal stress in basic material. This can cause destruction of material compactness. So it was inevitable to find optimal cooling rate, i. e. such rate that would approach higher critical martensitic temperature. To keep to this cooling rate in practice is very demanding, or even impossible in certain cases. That is why the cooling rate applied in quenching was slightly higher than critical cooling rate according to CCT diagram. The last phase of steel block heat treating was 2-phase tempering at 220 C. The result of this heat treatment was significant decrease of internal stress that appeared during intensive cooling of basic material, brittleness decreased too. Negative accompanying phenomenon was drop of basic material hardness from 64,6 HRC to 59,3 HRC. Experiments were carried out directly in company producing shearing tools. The results of the experiments were confronted with general knowledge from the field of tool steels heat treating. Literature [1] Fabian S., Straka Ľ.: Quantification of Function Dependence Quality Parameters on Technological Parameters at Electroerosive Steel Cutting, Strojírenská technologie, Journal, vol. 11, No. 2, 2006, pp. 21-24. [2] Fabian S., Straka Ľ.: Quality Products in Cutting Steel Process with EDM Technology, Strojárstvo Journal IX, 12/2005, p. 65. [3] Adamczak S., Osanna H.: "Modern Metrology in Quality Management Systems", Science Report, Project PL-0007, CEEPUS, Kielce University of Technology, 2006 [4] Vitázek I., Tkáč Z., Petranský I., Bolla M.: Teplotechnika a hydrotechnika. Zbierka príkladov a laboratórne cvičenia, 1. vyd. SPU Nitra, 2004, 108 s. [5] Straka Ľ. et al.: The Modelling and Simulation of Quality in Process EDM Cutting with Wire Electrode, 5th International DAAAM Baltic Conference "Industrial Engineering - Adding Innovation Capacity of Labour Force and Entrepreneurs" 20-22 April 2006. [6] Straka Ľ., Čorný I.: The Influence of the Technological Parameters of the WEDM Process on the Surface Roughness, Science report, Modern Metrology in Quality Management Systems, Kielce, University of Technology, 2006, pp. 257-265. [7] Vasilko K.: Machining Surfaces, Nitra TUT, 2000, 183 p. [8] STN ISO 6507 Hardness Measurement