Matematika II. 1. Bc. FMMR. Materiál pre samoštúdium na 10. týždeň semestra. Lineárne diferenciálne rovnice 1. rádu

Veľkosť: px
Začať zobrazovať zo stránky:

Download "Matematika II. 1. Bc. FMMR. Materiál pre samoštúdium na 10. týždeň semestra. Lineárne diferenciálne rovnice 1. rádu"

Prepis

1 Matematika II. Bc. FMMR Materiál pre samoštúdium na 0. týždeň semestra Domáce zadanie č. 9: 3.99, 3.04, 3.7, 3.9, 3.4, 3.9 Literatúra: Knežo, D., Andrejiová, M., Kimáková, Z.: Matematika, TUKE SjF, Košice, 00. Riešené príkla: Lineárne diferenciálne rovnice. rádu Príklad Riešme lineárnu diferenciálnu rovnicu y + e 3. Riešenie: Lineárnou diferenciálnou rovnicou (LDR. rádu rozumieme rovnicu v tvare y + p( q(, kde p(, q( sú spojité funkcie, q( 0. Rovnicu riešime v dvoch krokoch.. Riešime rovnicu bez pravej strany y + 0. Je to diferenciálna rovnica so separovateľnými premennými, a tak ju riešime separáciou premenných d = y = d y ln y = + c. Získali sme všeobecné riešenie rovnice bez pravej strany, ktoré zapíšeme v eplicitnom tvare. Pri úpravách využívame vzťahy = e ln, n log a = log a n, a r+s = a r a s e ln y = e +c y = e e c ce, c R.. Riešime rovnicu s pravou stranou metódou variácie konštanty. Konštantu c budeme považovať za funkciu premennej, c c(, a tak riešenie zadanej diferenciálnej rovnice určíme v tvare c(e. Ak táto funkcia má byť riešením zadanej diferenciálnej rovnice, musí tejto rovnici vyhovovať. Preto neznámu funkciu c( určíme po dosadení funkcie y a jej derivácie y do zadanej diferenciálnej rovnice. Vypočítame deriváciu funkcie y y = c (e + c(e ( a spolu s funkciou c(e ich dosadíme do zadanej rovnice y + e 3 Neznámu funkciu c( určíme integrovaním c (e c(e + c(e = e 3 c( = c (e = e 3 e 5 d = e5 5 + k. c ( = e3 e. Keďže už poznáme funkciu c(, dosadíme ju do vzťahu c(e, a tak získame všeobecné riešenie zadanej lineárnej diferenciálnej rovnice ( e k e, k R.

2 Príklad Riešme lineárnu diferenciálnu rovnicu y 4 3. Riešenie: Upravíme zadanú rovnicu na tvar y + p( q( vydelením rovnice výrazom. Pre 0 získame y 4y = 3. V prvom kroku riešime separáciou premenných rovnicu bez pravej strany y 4y = 0 d = 4y y = 4 d ln y = 4 ln + c. Všeobecné riešenie rovnice bez pravej strany upravíme na eplicitný tvar e ln y 4 ln +c = e y = e ln 4 e c c 4, c R. V druhom kroku vypočítame všeobecné riešenie rovnice s pravou stranou metódou variácie konštanty. Konštantu c budeme považovať za funkciu premennej, a tak hľadáme riešenie v tvare c( 4. Vypočítame deriváciu tejto funkcie y = c ( 4 + c(4 3. Dosadením funkcie y a jej derivácie y do zadanej rovnice získame neznámu funkciu c( c ( 4 + 4c( 3 4c(4 = 3 c ( 4 + 4c( 3 4c( 3 = 3 c ( 4 = 3 c ( = 3 c( = 4 ( d = ( d = k = k. Dosadením vypočítanej funkcie c( do vzťahu c( 4 získame všeobecné riešenie zadanej LDR ( k k 4, k R. Príklad 3 Riešme lineárnu diferenciálnu rovnicu y y tg = cos 3. Riešenie: V prvom kroku riešime rovnicu bez pravej strany separáciou premenných y y tg = 0 d = y tg y = sin cos d

3 sin ln y = cos d ln y = ln cos + c. Všeobecné riešenie upravíme na eplicitný tvar e ln y ln cos +c = e y = e ln (cos e c c(cos c cos, c R. V druhom kroku vypočítame všeobecné riešenie rovnice s pravou stranou metódou variácie konštanty, c c(. Riešenie zadanej LDR hľadáme v tvare c( cos. Vypočítame deriváciu tejto funkcie y = c ( cos c( ( sin cos. Dosadením funkcie y a jej derivácie y do zadanej rovnice získame neznámu funkciu c( c ( cos + c( sin cos c( cos sin cos = cos 3 = cos 3 c ( cos + c( sin c( sin cos Dosadením vypočítanej funkcie c( do vzťahu c( cos c ( cos = cos 3 c ( = cos cos 3 c( = cos d = tg + k. získame všeobecné riešenie zadanej LDR tg + k cos, k R. Príklad 4 Riešme lineárnu diferenciálnu rovnicu y + ln +. Riešenie: Pre 0 rovnicu vydelíme výrazom, a tak získame lineárnu diferenciálnu rovnicu v tvare y + ln +. Najskôr riešime rovnicu bez pravej strany separáciou premenných y + y = 0 d = y y = d ln y = ln + c e ln y = e ln +c y = e ln e c 3

4 c, c R. Všeobecné riešenie rovnice s pravou stranou učíme metódou variácie konštanty. Konštantu c začneme považovať za funkciu premennej, a tak hľadáme riešenie v tvare c(. Dosadením funkcie y a jej derivácie y = c ( + c(( do zadanej rovnice získame neznámu funkciu c( c ( c( + c( = ln + c ( c( + c( = ln + Všeobecné riešenie zadanej LDR má tvar c ( = ln + c ( = ( ln + c( = ( ln + d = u = ln +, v = u =, v = = ( ln + d = ( ln + = ( ln + + k. [( ln + + k ( ln + + k d ln + k, k R. Príklad 5 Riešme lineárnu diferenciálnu rovnicu y y = Riešenie: Ukážeme si ako môžeme vypočítať riešenie zadanej lineárnej diferenciálnej rovnice pomocou vzorca. Z teórie vieme, že všeobecné riešenie LDR s pravou stranou y + p( q( má tvar [ q(e p(d d + c e p(d. V našom prípade spojité funkcie p( a q( majú tvar p( =, q( = Pripravíme si integrál, ktorý sa nachádza vo vzorci p(d = d = ln + +, + integračnú konštantu môžeme zvoliť nulovú. Tým všeobecné riešenie zadanej LDR nadobúda tvar [ [ q(e p(d d + c e + + p(d = e ln(+ + d + c e ln(+ +. Vypočítame neurčitý integrál + + e ln( d = + + d = d = arcsin + k. 4

5 Potom všeobecné riešenie zadanej LDR má tvar (arcsin + k ( + +, k R. Príklad 6 Určme partikulárne riešenie lineárnej diferenciálnej rovnice y 3 e, ktoré spĺňa počiatočnú podmienku y( = 3. Riešenie: Najskôr vypočítame všeobecné riešenie zadanej lineárnej diferenciálnej rovnice. V prvom kroku určíme separáciou premenných eplicitný tvar všeobecného riešenia rovnice bez pravej strany y 0 y = d ln y = ln + c c, c R. V druhom kroku určíme metódou variácie konštanty všeobecné riešenie rovnice s pravou stranou. Dosadením funkcie c( jej derivácie y = c ( + c( do zadanej rovnice získame neznámu funkciu c( c ( + c( c( = 3 e c ( = e c( = e d = = t d = dt d = dt = e t dt = et + k = e + k. ( e Získali sme všeobecné riešenie zadanej LDR v tvare + k, k R. Úlohou je nájsť partikulárne riešenie, ktoré spĺňa zadanú podmienku y( = 3. Hľadáme jedno riešenie, ktoré prechádza bodom [, 3. Získame ho tak, že do všeobecného riešenia dosadíme hodnoty =, 3, čím určíme hodnotu konštanty k ( e 3 = + k k = 3 e. Partikulárne riešenie zadanej Cauchyho úlohy má tvar (e + 3 e ( e + 6 e. Príklad 7 Určme partikulárne riešenie lineárnej diferenciálnej rovnice ( + y +, ktoré spĺňa počiatočnú podmienku y(0 =. Riešenie: Najskôr vypočítame všeobecné riešenie lineárnej diferenciálnej rovnice upravenej pre na tvar y + y. V prvom kroku vypočítame separáciou premenných eplicitný tvar všeobecného riešenia rovnice bez pravej strany + y + y + = 0 d = y + + = 5

6 y = + d ln y = ln + + c c( + c ( +, c R. Všeobecné riešenie rovnice s pravou stranou určíme metódou variácie konštanty v tvare jej derivácie y = c ((+ c((+ (+ 4 do zadanej rovnice získame neznámu funkciu c( c( (+ c (( + c(( + ( = + c (( + c(( + ( c( ( + 3 = + c (( + c(( + + c(( + ( + 4 = + c ( ( + = + c( = ( + d = c( (+. Dosadením funkcie y a ( + d = k. ( Vypočítali sme všeobecné riešenie v tvare k (+, k R. Úlohou je nájsť partikulárne riešenie, ktoré spĺňa zadanú podmienku y(0 =. Získame ho dosadením hodnôt = 0, do vypočítaného všeobecného riešenia ( 0 = k k =. Partikulárne riešenie zadanej Cauchyho úlohy má tvar ( ( +. Ďalšie úlohy na precvičenie: Riešte lineárne diferenciálne rovnice:. y = 3y +. y 6( + 3. y 4 [ c3 [ (3 + 6 ln + c [ c y ln [ ( ln + c 5. ( + y ( + [ (c + ( + 6. y y + = + + [ (arcsin + c( y + y = 3 8. y + y = e [ c [ e e +c 6

7 9. y + ln + 0. y + y = ln +. y + 4y + = ( + 3. y e 3. y e 4. y + y + = arctg + 5. y cos y sin = sin 5 [ c + ln [ c + ln [ arctg +c ( + [ c e + e [ 4 e + ce 4 [ c e arctg + arctg [ cos 5 5 +c cos Nájdite partikulárne riešenie lineárnej diferenciálnej rovnice, ktorá spĺňa danú počiatočnú podmienku: 6. y, y( = [ + 7. y = y + + e ( +, y(0 = 3 [ (e + ( + 8. y + e 3, y(0 = 9. y +, y( = 0. y cos y sin =, y(0 = 0 [ e 5 (e5 + 4 [ [ cos 7

Slide 1

Slide 1 Diferenciálne rovnice Základný jazyk fyziky Motivácia Typická úloha fyziky hľadanie časových priebehov veličín, ktoré spĺňajú daný fyzikálny zákon. Určte trajektóriu telesa rt ( )???? padajúceho v gravitačnom

Podrobnejšie

4. Pravidlo ret azenia. Často sa stretávame so skupinami premenných, ktoré zložitým spôsobom závisia od iných skupín premenných. Pravidlo ret azenia p

4. Pravidlo ret azenia. Často sa stretávame so skupinami premenných, ktoré zložitým spôsobom závisia od iných skupín premenných. Pravidlo ret azenia p 4. Pravidlo ret azenia. Často sa stretávame so skupinami premenných, ktoré zložitým spôsobom závisia od iných skupín premenných. Pravidlo ret azenia pre funkcie viacerých premenných je univerzálna metóda,

Podrobnejšie

Microsoft Word - 6 Výrazy a vzorce.doc

Microsoft Word - 6 Výrazy a vzorce.doc 6 téma: Výrazy a vzorce I Úlohy na úvod 1 1 Zistite definičný obor výrazu V = 4 Riešte sústavu 15 = 6a + b, = 4a c, 1 = 4a + b 16c Rozložte na súčin výrazy a) b 4 a 18, b) c 5cd 10c d +, c) 6 1 s + z 4

Podrobnejšie

1 Priebeµzné písomné zadanie µc.1. Príklady je potrebné vypoµcíta t, napísa t, a odovzda t, na kontrolu na nasledujúcej konzultácii. Nasledujúce integ

1 Priebeµzné písomné zadanie µc.1. Príklady je potrebné vypoµcíta t, napísa t, a odovzda t, na kontrolu na nasledujúcej konzultácii. Nasledujúce integ Priebeµzné písomné zadanie µc.. Príklady je potrebné vypoµcíta t, napísa t, a odovzda t, na kontrolu na nasledujúcej konzultácii. Nasledujúce integrály vypoµcítajte pomocou základných pravidiel derivovania.

Podrobnejšie

Matematika 2 - cast: Funkcia viac premenných

Matematika 2 - cast: Funkcia viac premenných Matematika 2 časť: Funkcia viac premenných RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Spojitosť

Podrobnejšie

A 1

A 1 Matematika A :: Test na skúške (ukážka) :: 05 Daná je funkcia g : y 5 arccos a) Zistite oblasť definície funkcie b) vyjadrite inverznú funkciu g Zistite rovnice asymptot (so smernicou bez smernice) grafu

Podrobnejšie

1. KOMPLEXNÉ ČÍSLA 1. Nájdite výsledok operácie v tvare x+yi, kde x, y R. a i (5 2i)(4 i) b. i(1 + i)(1 i)(1 + 2i)(1 2i) (1 7i) c. (2+3i) a+bi d

1. KOMPLEXNÉ ČÍSLA 1. Nájdite výsledok operácie v tvare x+yi, kde x, y R. a i (5 2i)(4 i) b. i(1 + i)(1 i)(1 + 2i)(1 2i) (1 7i) c. (2+3i) a+bi d KOMPLEXNÉ ČÍSLA Nájdite výsledok operácie v tvare xyi, kde x, y R 7i (5 i)( i) i( i)( i)( i)( i) ( 7i) (i) abi a bi, a, b R i(i) 5i Nájdite x, y R také, e (x y) i(x y) = i (ix y)(x iy) = i y ix x iy i

Podrobnejšie

Funkcie viac premenných

Funkcie viac premenných Funkcie viac premenných January 21, 215 Regulárne zobrazenia Nech je zobrazenie X = Φ(T) dané rovnicami: x 1 = ϕ 1 (t 1, t 2,, t n), x 2 = ϕ 2 (t 1, t 2,, t n), x n = ϕ n(t 1, t 2,, t n), a ak majú funkcie

Podrobnejšie

Cvičenie 9 Riešené príklady 1. Príklad min f(x 1, x 2 ) = x x x 1 s.t. x 1 80 x 1 + x Pre riešenie úlohy vykonáme nasledujúce kroky

Cvičenie 9 Riešené príklady 1. Príklad min f(x 1, x 2 ) = x x x 1 s.t. x 1 80 x 1 + x Pre riešenie úlohy vykonáme nasledujúce kroky Cvičenie 9 Riešené príklady 1. Príklad min f(x 1, x 2 ) = x 2 1 + x2 2 + 60x 1 s.t. x 1 80 x 1 + x 2 120 Pre riešenie úlohy vykonáme nasledujúce kroky: 1. Najskôr upravíme ohraničenia do tvaru a následne

Podrobnejšie

Základy automatického riadenia - Prednáška 2

Základy automatického riadenia - Prednáška 2 Základy automatického riadenia Predná²ka 2 doc. Ing. Anna Jadlovská, PhD., doc. Ing. Ján Jadlovský, CSc. Katedra kybernetiky a umelej inteligencie Fakulta elektrotechniky a informatiky Technická univerzita

Podrobnejšie

III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) Matematická analýza IV (ÚMV/MAN2d/10) RNDr. Lenka Halčinová, PhD.

III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) Matematická analýza IV (ÚMV/MAN2d/10) RNDr. Lenka Halčinová, PhD. III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) (ÚMV/MAN2d/10) lenka.halcinova@upjs.sk 11. apríla 2019 3.3 Derivácia v smere, vzt ah diferenciálu, gradientu a smerovej

Podrobnejšie

Slide 1

Slide 1 SÚSTAVA TRANSF. VZŤAHY Plošné, objemové element Polárna Clindrická rcos rsin rcos r sin z z ds rddr dv rddrdz rcossin Sférická r sin sin dv r sin drd d z rcos Viacrozmerné integrál vo fzike Výpočet poloh

Podrobnejšie

Jozef Kiseľák Sada úloh na precvičenie VIII. 15. máj 2014 A. (a) (b) 1

Jozef Kiseľák Sada úloh na precvičenie VIII. 15. máj 2014 A. (a) (b) 1 Jozef Kiseľák Sada úloh na precvičenie VIII. 15. máj 2014 A. (a) (b) 1 A Pomocou Charpitovej metódy vyriešte rovnicu. x u x + y u y = u u x y u 2 = xy u u x y 3. u 2 y = u y u 4. u 2 x = u x u u x = B.

Podrobnejšie

Pokrocilé programovanie XI - Diagonalizácia matíc

Pokrocilé programovanie XI - Diagonalizácia matíc Pokročilé programovanie XI Diagonalizácia matíc Peter Markoš Katedra experimentálnej fyziky F2-523 Letný semester 2015/2016 Obsah Fyzikálne príklady: zviazané oscilátory, anizotrópne systémy, kvantová

Podrobnejšie

Úvod do lineárnej algebry Monika Molnárová Prednášky 2006

Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 1. 3. marca 2006 2. 10. marca 2006 c RNDr. Monika Molnárová, PhD. Obsah 1 Aritmetické vektory a matice 4 1.1 Aritmetické vektory........................

Podrobnejšie

Microsoft Word - Final_test_2008.doc

Microsoft Word - Final_test_2008.doc Záverečná písomka z Matematiky pre kog. vedu konaná dňa 3. 1. 008 Príklad 1. Odpovedzte na otázky z výrokovej logiky: (a Ako je definovaná formula (b Aký je rozdiel medzi tautológiou a splniteľnou formulou

Podrobnejšie

SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/ ročník MO Riešenia úloh česko-poľsko-slovenského stretnutia 1. Určte všetky trojice (a, b, c) kladných r

SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/ ročník MO Riešenia úloh česko-poľsko-slovenského stretnutia 1. Určte všetky trojice (a, b, c) kladných r SK MATEMATICKÁOLYMPIÁDA skmo.sk 009/010 59. ročník MO Riešenia úloh česko-poľsko-slovenského stretnutia 1. Určte všetky trojice (a, b, c) kladných reálnych čísel, ktoré sú riešením sústavy rovníc a b c

Podrobnejšie

8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1.2 Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru

8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1.2 Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru 8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1. Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru P platí F B = F A, BD = AE, DG = EG F = G. 1.3 Dokážte

Podrobnejšie

S rok 2 roky t = 4 1 rok MATEMATIKA I A REPETITÓRIUM Z MATEMATIKY pre Hospodársku informatiku Monika Molnárová Košice 2018

S rok 2 roky t = 4 1 rok MATEMATIKA I A REPETITÓRIUM Z MATEMATIKY pre Hospodársku informatiku Monika Molnárová Košice 2018 S 230 280 270 0 1 2 3 4 5 1 rok 2 roky t = 4 1 rok MATEMATIKA I A REPETITÓRIUM Z MATEMATIKY pre Hospodársku informatiku Monika Molnárová Košice 2018 MATEMATIKA I A REPETITÓRIUM Z MATEMATIKY pre Hospodársku

Podrobnejšie

Axióma výberu

Axióma výberu Axióma výberu 29. septembra 2012 Axióma výberu Axióma VIII (Axióma výberu) ( S)[( A S)(A ) ( A S)( B S)(A B A B = ) ( V )( A S)( x)(v A = {x})] Pre každý systém neprázdnych po dvoch disjunktných množín

Podrobnejšie

Snímka 1

Snímka 1 Fyzika - prednáška 8 Ciele 3. Kmity 3.1 Netlmený harmonický kmitavý pohyb 3. Tlmený harmonický kmitavý pohyb Zopakujte si Výchylka netlmeného harmonického kmitavého pohybu je x = Asin (ω 0 t + φ 0 ) Mechanická

Podrobnejšie

VZTAH STUDENTŮ VŠ K DISCIPLÍNÁM TEORETICKÉ INFORMATIKY

VZTAH STUDENTŮ VŠ K DISCIPLÍNÁM TEORETICKÉ INFORMATIKY 5. vedecká konferencia doktorandov a mladých vedeckých pracovníkov LIMITA A DERIVÁCIA FUNKCIE UKÁŽKA KVANTITATÍVNEHO VÝSKUMU Ján Gunčaga The present paper is devoted to a qualitative research related to

Podrobnejšie

Základy práce s textovými reťazcami Doteraz sme v MATLABe pracovali s datovými typmi: reálne číslo, vektor, matica. Veľmi dôležitým a často používaným

Základy práce s textovými reťazcami Doteraz sme v MATLABe pracovali s datovými typmi: reálne číslo, vektor, matica. Veľmi dôležitým a často používaným Základy práce s textovými reťazcami Doteraz sme v MATLABe pracovali s datovými typmi: reálne číslo, vektor, matica. Veľmi dôležitým a často používaným dátovým typom je textový reťazec. Ako si môžeme predstaviť

Podrobnejšie

Ďalšie vlastnosti goniometrických funkcií

Ďalšie vlastnosti goniometrických funkcií Ďalšie vlastnosti goniometrických funkcií Na obrázku máme bod B na jednotkovej kružnici, a rovnobežne s y-ovou osou bodom B vznikol pravouhlý trojuholník. Jeho prepona je polomer kružnice má veľkosť 1,

Podrobnejšie

Seriál XXXII.II Mechanika, FYKOS

Seriál XXXII.II Mechanika, FYKOS Seriál: Mechanika Úvod Na úvod vás vítam pri čítaní druhej časti seriálu u. Začiatkom druhej série sa ešte raz vrátime k značeniu, kde si rýchlo ukážeme ako fungujú indexy, ktoré nám umožnia písať jednu

Podrobnejšie

Priebeh funkcie

Priebeh funkcie Technická univerzita Košice monika.molnarova@tuke.sk Obsah 1 Monotónnosť funkcie Lokálne extrémy funkcie Globálne (absolútne) extrémy funkcie Konvexnosť a konkávnosť funkcie Monotónnosť funkcie Monotónnosť

Podrobnejšie

Zadanie_1_P1_TMII_ZS

Zadanie_1_P1_TMII_ZS Grafické riešenie mechanizmov so súčasným pohybom DOMÁE ZDNIE - PRÍKLD č. Príklad.: Určte rýchlosti a zrýchlenia bodov,, a D rovinného mechanizmu na obrázku. v danej okamžitej polohe, ak je daná konštantná

Podrobnejšie

Hranoly (11 hodín) September - 17 hodín Opakovanie - 8. ročník (6 hodín) Mesiac Matematika 9. ročník 5 hodín/týždeň 165 hodín/rok Tematický celok Poče

Hranoly (11 hodín) September - 17 hodín Opakovanie - 8. ročník (6 hodín) Mesiac Matematika 9. ročník 5 hodín/týždeň 165 hodín/rok Tematický celok Poče Hranoly ( hodín) September - 7 hodín Opakovanie - 8. ročník (6 hodín) Mesiac Matematika 9. ročník 5 hodín/týždeň 65 hodín/rok Tematický celok Počet hodín 6 Téma Obsahový štandard Výkonový štandard Opakovanie

Podrobnejšie

Základné stochastické procesy vo financiách

Základné stochastické procesy vo financiách Technická Univerzita v Košiciach Ekonomická fakulta 20. Január 2012 základné charakteristiky zmena hodnoty W t simulácia WIENEROV PROCES základné charakteristiky základné charakteristiky zmena hodnoty

Podrobnejšie

Microsoft Word - Diskusia11.doc

Microsoft Word - Diskusia11.doc Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky MATEMATIKA - 011 sem vlepiť čiarový kód uchádzača Test obsahuje 30 úloh. Na jeho vypracovanie máte 90 minút. Každá úloha spolu

Podrobnejšie

(Pom\371cka k p\370\355prav\354 v\375ukov\351 hodiny s podporou Classroom Managementu \(Matematika\))

(Pom\371cka k p\370\355prav\354 v\375ukov\351 hodiny s podporou Classroom Managementu \(Matematika\)) 1 of 12 20.10.2015 11:19 Pomůcka k přípravě výukové hodiny s podporou Classroom Managementu (Matematika) Obsah knihy: Mnohočleny Procenta Lomené výrazy Mocniny a odmocniny Zlomky Rovnice a soustavy rovnic

Podrobnejšie

MO_pred1

MO_pred1 Modelovanie a optimalizácia Ľudmila Jánošíková Katedra dopravných sietí Fakulta riadenia a informatiky Žilinská univerzita, Žilina Ludmila.Janosikova@fri.uniza.sk 041/5134 220 Modelovanie a optimalizácia

Podrobnejšie

PowerPoint Presentation

PowerPoint Presentation Vymenujte základné body fyzikálneho programu ktoré určujú metodológiu fyziky pri štúdiu nejakého fyzikálneho systému Ako vyzerá pohybová rovnica pre predpovedanie budúcnosti častice v mechanike popíšte,

Podrobnejšie

Model tesnej väzby (TBH) Peter Markoš, KF FEI STU April 21, 2008 Typeset by FoilTEX

Model tesnej väzby (TBH) Peter Markoš, KF FEI STU April 21, 2008 Typeset by FoilTEX Model tesnej väzby (TBH) Peter Markoš, KF FEI STU April 21, 28 Typeset by FoilTEX Obsah 1. TBH: definícia: elektrónový, elektromagnetický 2. Disperzné vzt ahy 3. Spektrum, okrajové podmienky 4. TBH vs.

Podrobnejšie

NÁVRH UČEBNÝCH OSNOV PRE 1

NÁVRH  UČEBNÝCH  OSNOV  PRE  1 PROGRAMOVANIE UČEBNÉ OSNOVY do ŠkVP Charakteristika voliteľného učebného predmetu Programovanie Programovanie rozširuje a prehlbuje žiacke vedomosti z predchádzajúcich povinného predmetu Informatika. Kompetencie

Podrobnejšie

2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom

2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom 2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom l nazývame dotyčnicou krivky f v bode P. Pre daný bod

Podrobnejšie

Kedy sa predné koleso motorky zdvihne?

Kedy sa predné koleso motorky zdvihne? Kedy sa predné koleso motorky zdvihne? Samuel Kováčik Commenius University samuel.kovacik@gmail.com 4. septembra 2013 Samuel Kováčik (KTF FMFI) mat-fyz 4. septembra 2013 1 / 23 Bojový plán Čo budeme chcieť

Podrobnejšie

Microsoft Word - Zaver.pisomka_januar2010.doc

Microsoft Word - Zaver.pisomka_januar2010.doc Písomná skúška z predmetu lgebra a diskrétna matematika konaná dňa.. 00. príklad. Dokážte metódou vymenovaním prípadov vlastnosť: Tretie mocniny celých čísel sú reprezentované celými číslami ktoré končia

Podrobnejšie

Photo Album

Photo Album MZDY Stravné lístky COMPEKO, 2019 V programe je prepracovaná práca s evidencoiu stravných lístkov. Z hľadiska dátových štruktúr je spracovanie stravných lístkov rozložené do súborov MZSTRLH.dbf a MZSTRLP.dbf,

Podrobnejšie

Informačné technológie

Informačné technológie Informačné technológie Piatok 15.11. 2013 Matúš Péči Barbora Zahradníková Soňa Duchovičová Matúš Gramlička Začiatok/Koniec Z K Vstup/Výstup A, B Načítanie vstupných premenných A, B resp. výstup výstupných

Podrobnejšie

9. kapitola Maticová algebra II systém lineárnych rovníc, Frobeniova veta, Gaussova eliminačná metóda, determinanty 1. Systém lineárnych rovníc Systém

9. kapitola Maticová algebra II systém lineárnych rovníc, Frobeniova veta, Gaussova eliminačná metóda, determinanty 1. Systém lineárnych rovníc Systém 9. kapitola Maticová algebra II systém lineárnych rovníc, Frobeniova veta, Gaussova eliminačná metóda, determinanty. Systém lineárnych rovníc Systém lineárnych rovníc, ktorý obsahuje m rovníc o n neznámych

Podrobnejšie

SK MATEMATICKÁOLYMPIÁDA skmo.sk 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh česko-poľsko-slovenského stretnutia 1. Dokážte, že kladné re

SK MATEMATICKÁOLYMPIÁDA skmo.sk 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh česko-poľsko-slovenského stretnutia 1. Dokážte, že kladné re SK MATEMATICKÁOLYMPIÁDA skmo.sk 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh česko-poľsko-slovenského stretnutia 1. Dokážte, že kladné reálne čísla a, b, c spĺňajú rovnicu a 4 + b 4 + c 4

Podrobnejšie

O možnosti riešenia deformácie zemského povrchu z pohladu metódy konecných prvkov konference pro studenty matematiky

O možnosti riešenia deformácie zemského povrchu z pohladu metódy konecných prvkov konference pro studenty matematiky O možnosti riešenia deformácie zemského povrchu z pohľadu metódy konečných prvkov 19. konference pro studenty matematiky Michal Eliaš ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Katedra matematiky 7. 9. 6. 2011

Podrobnejšie

Testy z CSS_2015_16

Testy z CSS_2015_16 Previerkové otázky na skúšku z ČSS 1. Vyjadrite slovne a matematicky princíp superpozície pre lineárnu diskrétnu sústavu. 2. Čo fyzikálne predstavuje riešenie homogénnej a nehomogénnej lineárnej diferenčne

Podrobnejšie

Operačná analýza 2

Operačná analýza 2 Súradnicové sústavy a zobrazenia Súradnicové sústavy v rovine (E 2 ) 1. Karteziánska súradnicová sústava najpoužívanejšia súradnicová sústava; určená začiatkom O, kolmými osami x, y a rovnakými jednotkami

Podrobnejšie

Preco kocka stací? - o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, ked sú velké

Preco kocka stací? - o tom, ako sú rozdelené vlastné hodnoty laplasiánu   v limite, ked sú velké o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, keď sú veľké o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, keď sú veľké zaujímavé, ale len pre matematikov... NIE! o tom, ako

Podrobnejšie

Vypracované úlohy z Panorámy z fyziky II Autor: Martin Brakl UČO: Dátum:

Vypracované úlohy z Panorámy z fyziky II Autor: Martin Brakl UČO: Dátum: Vypracované úlohy z Panorámy z fyziky II Autor: Martin Brakl UČO: 410 316 Dátum: 15.6.2013 Príklad 1 a) Aká je vzdialenosť medzi najbližšími susedmi v diamantovej mriežke uhlíka (C), kremíka (Si), germánia

Podrobnejšie

Príspevok k modelovaniu a riadeniu robotických systémov s využitím metód umelej inteligencie

Príspevok k modelovaniu a riadeniu robotických systémov s využitím metód umelej inteligencie PRÍSPEVOK K HYBRIDNÝM MODELOM KYBER-FYZIKÁLNYCH SYSTÉMOV A ICH IMPLEMENTÁCIA DO DISTRIBUOVANÉHO SYSTÉMU RIADENIA TUKE FEI KKUI školiteľ: Ing. Dominik Vošček doc. Ing. Anna Jadlovská, PhD. 14.3.2017 ČLENENIE

Podrobnejšie

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 Jednotkový koreň(unit roo

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 Jednotkový koreň(unit roo Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Podrobnejšie

Testovanie Matematika Výsledky a analýza priemernej úspešnosti žiakov 9. ročníka ZŠ v testovaných oblastiach a v jednotlivých úlohách z matemat

Testovanie Matematika Výsledky a analýza priemernej úspešnosti žiakov 9. ročníka ZŠ v testovaných oblastiach a v jednotlivých úlohách z matemat Testovanie 9 2019 Matematika Výsledky a analýza priemernej úspešnosti žiakov 9. ročníka ZŠ v testovaných oblastiach a v jednotlivých úlohách z matematiky Test z matematiky riešilo spolu 37 296 žiakov 9.

Podrobnejšie

7-dvojny_integral

7-dvojny_integral 7 DVOJNÝ INTEGRÁL A JEHO APLIKÁCIE 7 Otázk Dfinujt pojm intgráln súčt Dfinujt pojm vojný intgrál Dfinujt pojm strná honota funkci prmnných na množin Napíšt ako transformujt vojný intgrál pomocou polárnch

Podrobnejšie

ARMA modely čast 3: zmiešané modely (ARMA) Beáta Stehlíková Časové rady, FMFI UK ARMA modely časť 3: zmiešané modely(arma) p.1/30

ARMA modely čast 3: zmiešané modely (ARMA) Beáta Stehlíková Časové rady, FMFI UK ARMA modely časť 3: zmiešané modely(arma) p.1/30 ARMA modely čast 3: zmiešané modely (ARMA) Beáta Stehlíková Časové rady, FMFI UK ARMA modely časť 3: zmiešané modely(arma) p.1/30 ARMA modely - motivácia I. Odhadneme ACF a PACF pre dáta a nepodobajú sa

Podrobnejšie

Pocítacové modelovanie - Šírenie vln v nehomogénnom prostredí - FDTD

Pocítacové modelovanie  - Šírenie vln v nehomogénnom prostredí - FDTD Počítačové modelovanie Šírenie vĺn v nehomogénnom prostredí - FDTD Peter Markoš Katedra experimentálnej fyziky F2-523 Letný semester 2016/2017 Úvod Hľadáme riešenia časovo závislej parciálnej diferenciálnej

Podrobnejšie

Technická Univerzita Košice Matematicko počítačové modelovanie Vysokoškolská učebnica Košice 2013

Technická Univerzita Košice Matematicko počítačové modelovanie Vysokoškolská učebnica Košice 2013 Technická Univerzita Košice Matematicko počítačové modelovanie Vysokoškolská učebnica Košice 013 Technická Univerzita Košice Matematicko počítačové modelovanie Vysokoškolská učebnica Jozef Džurina Blanka

Podrobnejšie

Metrické konštrukcie elipsy Soňa Kudličková, Alžbeta Mackovová Elipsu, ako regulárnu kužeľosečku, môžeme študovať synteticky (konštrukcie bodov elipsy

Metrické konštrukcie elipsy Soňa Kudličková, Alžbeta Mackovová Elipsu, ako regulárnu kužeľosečku, môžeme študovať synteticky (konštrukcie bodov elipsy Metrické konštrukcie elipsy Soňa Kudličková, Alžbeta Mackovová Elipsu, ako regulárnu kužeľosečku, môžeme študovať synteticky (konštrukcie bodov elipsy) alebo analyticky (výpočet súradníc bodov elipsy).

Podrobnejšie

Generovanie viacstavových modelov a ich riešenie v Maxime 1 Jozef Fecenko Abstrakt Cieľom príspevku je prezentovať zdrojový kód v open source systéme

Generovanie viacstavových modelov a ich riešenie v Maxime 1 Jozef Fecenko Abstrakt Cieľom príspevku je prezentovať zdrojový kód v open source systéme Generovanie viacstavových modelov a ich riešenie v Maxime 1 Jozef Fecenko Abstrakt Cieľom príspevku je prezentovať zdrojový kód v open source systéme Maxima na generovanie viacstavových Markovovských modelov,

Podrobnejšie

1 Portál pre odborné publikovanie ISSN Heuristický adaptívny PSD regulátor založený na miere kmitavosti Šlezárová Alexandra Elektrotechnika

1 Portál pre odborné publikovanie ISSN Heuristický adaptívny PSD regulátor založený na miere kmitavosti Šlezárová Alexandra Elektrotechnika 1 Portál pre odborné publikovanie ISSN 1338-0087 Heuristický adaptívny PSD regulátor založený na miere kmitavosti Šlezárová Alexandra Elektrotechnika 28.04.2010 Článok spočíva v predstavení a opísaní algoritmu

Podrobnejšie

Bodová častica vo VTR Vladimír Balek Pole bodového náboja. Majme časticu s nábojom q, ktorá sa nachádza v počiatku súradníc. Elektrická intenzita E v

Bodová častica vo VTR Vladimír Balek Pole bodového náboja. Majme časticu s nábojom q, ktorá sa nachádza v počiatku súradníc. Elektrická intenzita E v Bodová častica vo VTR Vladimír Balek Pole bodového náboja. Majme časticu s nábojom q, ktorá sa nachádza v počiatku súradníc. Elektrická intenzita E v priestore okolo častice je daná Gaussovým zákonom E

Podrobnejšie

Bariéra, rezonančné tunelovanie Peter Markoš, KF FEI STU February 25, 2008 Typeset by FoilTEX

Bariéra, rezonančné tunelovanie Peter Markoš, KF FEI STU February 25, 2008 Typeset by FoilTEX Bariéra, rezonančné tunelovanie Peter Markoš, KF FEI STU February 25, 28 Typeset by FoilTEX Obsah 1. Prechod potenciálovou bariérou, rezonančná transmisia, viazané stavy. 2. Rozptylová matica S a transfer

Podrobnejšie

Čísla Nájdite všetky dvojice prirodzených čísiel, ktoré vyhovujú rovnici: 2 ( a+ b) ( a b) + 2b ( a+ 2b) 2b = 49 RIEŠENIE ( ) ( ) ( ) 2 a+ b a

Čísla Nájdite všetky dvojice prirodzených čísiel, ktoré vyhovujú rovnici: 2 ( a+ b) ( a b) + 2b ( a+ 2b) 2b = 49 RIEŠENIE ( ) ( ) ( ) 2 a+ b a Čísla 9 89. Nájdite všetky dvojice prirodzených čísiel, ktoré vyhovujú rovnici: ( a+ b) ( a b) + b ( a+ b) b 9 ( ) ( ) ( ) a+ b a b + b a+ b b 9 ( a b ) + ab + b b 9 a b + ab + b 9 a + ab + b 9 a+ b 9

Podrobnejšie

Operačná analýza 2

Operačná analýza 2 Krivky (čiary) Krivku môžeme definovať: trajektória (dráha) pohybujúceho sa bodu, jednoparametrická sústava bodov charakterizovaná určitou vlastnosťou,... Krivky môžeme deliť z viacerých hľadísk, napr.:

Podrobnejšie

CH43skFri07

CH43skFri07 Súťažné úlohy Chemickej olympiády v kategórii F Pre. a 4. ročníky stredných odborných škôl chemického zamerania Školské kolo Riešenie a hodnotenie teoretických a praktických úloh 006/07 Vydala Iuventa

Podrobnejšie

Prijímacie skúšky kritériá pre školský rok 2018/2019 Študijný odbor 4236 M ekonomika pôdohospodárstva Prihlášky na štúdium v tomto študijnom odbore tr

Prijímacie skúšky kritériá pre školský rok 2018/2019 Študijný odbor 4236 M ekonomika pôdohospodárstva Prihlášky na štúdium v tomto študijnom odbore tr Prijímacie skúšky kritériá pre školský rok 2018/2019 Študijný odbor 4236 M ekonomika pôdohospodárstva Prihlášky na štúdium v tomto študijnom odbore treba doručiť do 20. 4. 2018 Prijímacie skúšky budú v

Podrobnejšie

8

8 8. Funkcie pre prácu s údajmi 8.1. Základné funkcie pre prácu s údajmi MATLAB umožňuje aj štatistické spracovanie údajov. Jednotlivé prvky sú zadávané ako matica (vektor). V prípade matice sa operácie

Podrobnejšie

prijimacky 2014 MAT 4rocne ver A.doc

prijimacky 2014 MAT 4rocne ver A.doc Priezvisko a meno: " Sem nepíš! Kód: M-A-4r Kód: M-A-4r 1. súkromné gymnázium v Bratislave, Bajkalská 20, Bratislava Test z matematiky (verzia A 12. máj 2014) Pokyny pre žiakov 1. 2. Tento test obsahuje

Podrobnejšie

gulas.dvi

gulas.dvi Obsah Neur it integr l 7. kladn pojmy a vz ahy.................................. 7.. kladn neur it integr ly............................. 9.. Cvi enia..........................................3 V sledky........................................

Podrobnejšie

prednaska

prednaska Úvod do nelineárnych systémov doc. Ing. Anna Jadlovská, PhD. ZS 2016 Prednáška 1 1.1 Stručné zopakovanie pojmov z LDS Uvažujme lineárny t-invariantný DS n-tého rádu (LDS): pričom x(t) 2 R n, u(t) 2 R n,

Podrobnejšie

Informačná a modelová podpora pre kvantifikáciu prvkov daňovej sústavy SR

Informačná a modelová podpora pre kvantifikáciu prvkov daňovej sústavy SR Nelineárne optimalizačné modely a metódy Téma prednášky č. 5 Prof. Ing. Michal Fendek, CSc. Katedra operačného výskumu a ekonometrie Ekonomická univerzita Dolnozemská 1 852 35 Bratislava Označme ako množinu

Podrobnejšie

SK MATEMATICKÁOLYMPIÁDA skmo.sk 65. ročník Matematickej olympiády 2015/2016 Riešenia úloh domáceho kola kategórie Z9 1. Objem vody v mestskom bazéne s

SK MATEMATICKÁOLYMPIÁDA skmo.sk 65. ročník Matematickej olympiády 2015/2016 Riešenia úloh domáceho kola kategórie Z9 1. Objem vody v mestskom bazéne s SK MATEMATICKÁOLYMPIÁDA skmo.sk 65. ročník Matematickej olympiády 2015/2016 Riešenia úloh domáceho kola kategórie Z9 1. Objem vody v mestskom bazéne s obdĺžnikovým dnom je 6 998,4 hektolitrov. Propagačný

Podrobnejšie

Seriál XXXII.IV Mechanika, FYKOS

Seriál XXXII.IV Mechanika, FYKOS Seriál: Mechanika V tejto časti seriálu dokončíme príklad, ktorý sme minule začali - výpočet matematického kyvadla. K tomu ale budeme potrebovať vedieť, čo je to Taylorov rozvoj. Ďalej si ukážeme, ako

Podrobnejšie

1)

1) Prijímacia skúška z matematiky do prímy gymnázia s osemročným štúdiom Milá žiačka/milý žiak, sme veľmi radi, že ste sa rozhodli podať prihlášku na našu školu. Dúfame, že nasledujúce úlohy hravo vyriešite

Podrobnejšie

Oceňovanie amerických opcií p. 1/17 Oceňovanie amerických opcií Beáta Stehlíková Finančné deriváty, FMFI UK Bratislava

Oceňovanie amerických opcií p. 1/17 Oceňovanie amerických opcií Beáta Stehlíková Finančné deriváty, FMFI UK Bratislava Oceňovanie amerických opcií p. 1/17 Oceňovanie amerických opcií Beáta Stehlíková Finančné deriváty, FMFI UK Bratislava Oceňovanie amerických opcií p. 2/17 Európske a americké typy derivátov Uvažujme put

Podrobnejšie

Stredná odborná škola technická, Kozmálovská cesta 9, Tlmače Kritériá na prijímacie konanie pre študijné odbory školský rok 2018/2019 (denné štúdium)

Stredná odborná škola technická, Kozmálovská cesta 9, Tlmače Kritériá na prijímacie konanie pre študijné odbory školský rok 2018/2019 (denné štúdium) Kritériá na prijímacie konanie pre študijné odbory školský rok 2018/2019 (denné štúdium) 1. Počty žiakov a tried, ktoré možno prijať do prvého ročníka študijných odborov Podľa 65 ods. 1) Zákona č. 245/2008

Podrobnejšie

9.1 MOMENTY ZOTRVACNOSTI \(KVADRATICKÉ MOMENTY\) A DEVIACNÝ MOMENT PRIEREZU

9.1 MOMENTY ZOTRVACNOSTI \(KVADRATICKÉ MOMENTY\) A DEVIACNÝ MOMENT PRIEREZU Učebný cieľ kapitoly Po preštudovaní tejto kapitoly by ste mali ovládať: Charakteristiku kvadratických momentov prierezových plôch. Ako je definovaný kvadraticky moment plochy k osi a k pólu. Ako je definovaný

Podrobnejšie

Vybrané kapitoly zo štatistickej fyziky - domáce úlohy Michal Koval 19. mája 2015 Domáca úloha č. 1 (pochádza z: [3]) Systém pozos

Vybrané kapitoly zo štatistickej fyziky - domáce úlohy Michal Koval 19. mája 2015 Domáca úloha č. 1 (pochádza z: [3]) Systém pozos Vybrané kapitoly zo štatistickej fyziky - domáce úlohy Michal Koval koval@fmph.uniba.sk 19. mája 2015 Domáca úloha č. 1 (pochádza z: [3]) Systém pozostávajúci z N nezávislých spinov. Každý zo spinov sa

Podrobnejšie

Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú in

Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú in Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú intuitívne jasné a názorné napr. prirodzené čísla, zlomok,

Podrobnejšie

Katalóg cieľových požiadaviek k maturitnej skúške

Katalóg  cieľových požiadaviek  k maturitnej skúške CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY BRATISLAVA 2019 Schválilo Ministerstvo školstva, vedy, výskum a športu Slovenskej republiky dňa 12. júna 2019 pod číslom 2019/2049:2-A1020

Podrobnejšie

Microsoft Word - mpicv11.doc

Microsoft Word - mpicv11.doc 1. Vypočítajte obsah plochy ohraničenej súradnicovými osami a grafom funkcie y = x. a) vypočítame priesečníky grafu so súradnicovými osami x=... y = = y =... = x... x= priesečníku grafu funkcie so ; a

Podrobnejšie

Monday 25 th February, 2013, 11:54 Rozmerová analýza M. Gintner 1.1 Rozmerová analýza ako a prečo to funguje Skúsenost nás učí, že náš svet je poznate

Monday 25 th February, 2013, 11:54 Rozmerová analýza M. Gintner 1.1 Rozmerová analýza ako a prečo to funguje Skúsenost nás učí, že náš svet je poznate Monday 25 th February, 203, :54 Rozmerová analýza M. Gintner. Rozmerová analýza ako a prečo to funguje Skúsenost nás učí, že náš svet je poznatel ný po častiach. Napriek tomu, že si to bežne neuvedomujeme,

Podrobnejšie

Statika konštrukcií - prednášky

Statika konštrukcií - prednášky PEDAGOGICKÁ DOKUMENTÁCIA PREDMETU Názov : Statika konštrukcií Identifikačné číslo : B-501205 Garantujúca katedra, ústav : Katedra stavebnej mechaniky, Ústav inžinierskeho staviteľstva Študijný odbor :

Podrobnejšie

Prezentácia programu PowerPoint

Prezentácia programu PowerPoint Priestorové analýzy a modelovanie Prednáška 8 Názov prednášky: Vybrané interpolačné metódy Osnova prednášky: - Metóda trendového povrchu - Multivariačný splajn Odporúčaná literatúra KAŇUK, J., 2015: Priestorové

Podrobnejšie

Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV

Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A

Podrobnejšie

Matematický model činnosti sekvenčného obvodu 7 MATEMATICKÝ MODEL ČINNOSTI SEKVENČNÉHO OBVODU Konečný automat predstavuje matematický model sekvenčnéh

Matematický model činnosti sekvenčného obvodu 7 MATEMATICKÝ MODEL ČINNOSTI SEKVENČNÉHO OBVODU Konečný automat predstavuje matematický model sekvenčnéh 7 MTEMTICKÝ MODEL ČINNOSTI SEKVENČNÉHO OBVODU Konečný automat predstavuje matematický model sekvenčného obvodu. Konečný automat je usporiadaná pätica = (X, S, Y, δ, λ,) (7.) kde X je konečná neprázdna

Podrobnejšie

Paralelné algoritmy, cast c. 3

Paralelné algoritmy, cast c. 3 Paralelné algoritmy, čast č. 3 František Mráz Kabinet software a výuky informatiky, MFF UK, Praha Paralelné algoritmy, 2009/2010 František Mráz (KSVI MFF UK) Paralelné algoritmy, čast č. 3 Paralelné algoritmy,

Podrobnejšie

Diracova rovnica

Diracova rovnica 3. Štruktúra hadrónov 6. 3. 005 Rozptyl e e dáva: Pre kvadrát modulu amplitúdy fi platí: 8 e θ θ cos sin fi EE (1) Pre jeho účinný prierez dostávame: ( αe ) dσ θ θ cos sin δ ν + de dω kde αe /π, νe E.

Podrobnejšie

Časopis pro pěstování matematiky Jozef Oboňa; Nikolaj Podtjagin Eště o niektorých ďalších vlastnostiach kriviek triedy P a PP Časopis pro pěstování ma

Časopis pro pěstování matematiky Jozef Oboňa; Nikolaj Podtjagin Eště o niektorých ďalších vlastnostiach kriviek triedy P a PP Časopis pro pěstování ma Časopis pro pěstování matematiky Jozef Oboňa; Nikolaj odtjagin Eště o niektorých ďalších vlastnostiach kriviek triedy a Časopis pro pěstování matematiky, Vol. 98 (1973), No. 4, 357--368 ersistent URL:

Podrobnejšie

GIS ako nástroj priestorového rozhodovania

GIS ako nástroj priestorového rozhodovania Rastrový GIS ako nástroj priestorového rozhodovania Priestorové rozhodovanie Mapová algebra Priestorové rozhodovanie Rôzne úrovne priestorového riadenia Viac variantov rozhodovania Každý variant sa vyhodnocuje

Podrobnejšie

Microsoft Word - FRI”U M 2005 forma B k¾úè.doc

Microsoft Word - FRI”U M 2005 forma B k¾úè.doc Fakulta riadenia a informatik Žilinskej univerzit ( ) ( 6 ) 6 = 3 () 8 (D) 8 m Závislosť hmotnosti m častice od jej rýchlosti v je vjadrená vzťahom m =, kde m je v c pokojová hmotnosť častice, c je rýchlosť

Podrobnejšie

Náuka o teple

Náuka o teple Náuka o tele Stavová rovnica ideálneho lynu. Určité množstvo vodíka uzavreté v nádobe, ktorá má konštantný objem, má v toiacom sa ľade tlak Pa. Keď nádobu onoríme do teelného kúeľa, vzrastie tlak vodíka

Podrobnejšie

Microsoft Word - Príloha P2 - zadania pracovných listov pre 6. ročník

Microsoft Word - Príloha P2 - zadania pracovných listov pre 6. ročník P1 zadania pracovných listov pre 6. ročník 6.ročník, PL-1A (vstupný) 1. Vytvorte všetky trojciferné čísla z číslic 1, 2, 7, 0. 2. Sú dané veľkosti uhlov: 23, 37, 49, 89,112, 90, 147, 152, 176. Rozdeľte

Podrobnejšie

Matematické modelovanie, riadenie a simulacné overenie modelov mobilných robotov

Matematické modelovanie, riadenie a simulacné overenie modelov mobilných robotov Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky Matematické modelovanie, riadenie a simulačné overenie modelov mobilných robotov Konfernecia TECHNICOM 23.5.218, Košice Ing. Jakub

Podrobnejšie

Stat1_CV1 VES

Stat1_CV1 VES Štatistika 1 Cvičenie č. 1 Triedenie, Aritmetický priemer Príklad č. 1 Pri sledovaní výkonnosti zamestnancov sa v 20 sledovaných dňoch zistili nasledovné údaje o počte vybavených klientov počas smeny v

Podrobnejšie

Prezentace aplikace PowerPoint

Prezentace aplikace PowerPoint Ako vytvárať spätnú väzbu v interaktívnom matematickom učebnom prostredí Stanislav Lukáč, Jozef Sekerák Implementácia spätnej väzby Vysvetlenie riešenia problému, podnety pre konkrétne akcie vedúce k riešeniu

Podrobnejšie