Masarykova Univerzita Brno, Přírodovědecká fakulta Ústav matematiky a statistiky

Veľkosť: px
Začať zobrazovať zo stránky:

Download "Masarykova Univerzita Brno, Přírodovědecká fakulta Ústav matematiky a statistiky"

Prepis

1 Mluví příroda jazykem matematiky? Zdeněk Pospíšil Masarykova Univerzita Brno, Přírodovědecká fakulta Ústav matematiky a statistiky

2 Úvod Překvapivá účinnost matematiky Matematika Matematika ve fyzice Matematika v biologii dalšímu čtení Úvod Mluví příroda jazykem matematiky? 2 / 18

3 Překvapivá účinnost matematiky Úvod Překvapivá účinnost matematiky Matematika Matematika ve fyzice Galileo Galilei ( ): Matematika je jazyk, kterým Bůh napsal přírodu. Matematika v biologii dalšímu čtení Mluví příroda jazykem matematiky? 3 / 18

4 Překvapivá účinnost matematiky Úvod Překvapivá účinnost matematiky Matematika Matematika ve fyzice Galileo Galilei ( ): Matematika je jazyk, kterým Bůh napsal přírodu. Matematika v biologii dalšímu čtení John D. Barrow (*1952): Bude-li kdy objevena, obsahem,,teorie všeho bude logicky konzistentní matematika. Mluví příroda jazykem matematiky? 3 / 18

5 Překvapivá účinnost matematiky Úvod Překvapivá účinnost matematiky Matematika Matematika ve fyzice Galileo Galilei ( ): Matematika je jazyk, kterým Bůh napsal přírodu. Matematika v biologii dalšímu čtení John D. Barrow (*1952): Bude-li kdy objevena, obsahem,,teorie všeho bude logicky konzistentní matematika. Proč je matematika tak úspěšným nástrojem porozumění fyzikálnímu světu? Mluví příroda jazykem matematiky? 3 / 18

6 Úvod Matematika Vznik matematiky Co je matematika Užití matematiky Povaha matematiky Matematika ve fyzice Matematika v biologii dalšímu čtení Matematika Mluví příroda jazykem matematiky? 4 / 18

7 Vznik matematiky Mluví příroda jazykem matematiky? 5 / 18

8 Vznik matematiky Velký zlom: 6. století př.n.l. krize mythologie Mluví příroda jazykem matematiky? 5 / 18

9 Vznik matematiky Velký zlom: 6. století př.n.l. krize mythologie Řešení: Mluví příroda jazykem matematiky? 5 / 18

10 Vznik matematiky Velký zlom: 6. století př.n.l. krize mythologie Řešení: Siddhartha Gótama Mluví příroda jazykem matematiky? 5 / 18

11 Vznik matematiky Velký zlom: 6. století př.n.l. krize mythologie Řešení: Siddhartha Gótama: vše je jen představa Mluví příroda jazykem matematiky? 5 / 18

12 Vznik matematiky Velký zlom: 6. století př.n.l. krize mythologie Řešení: Siddhartha Gótama: vše je jen představa Zarathustra Mluví příroda jazykem matematiky? 5 / 18

13 Vznik matematiky Velký zlom: 6. století př.n.l. krize mythologie Řešení: Siddhartha Gótama: vše je jen představa Zarathustra: aktuálně probíhá boj dobra a zla Mluví příroda jazykem matematiky? 5 / 18

14 Vznik matematiky Velký zlom: 6. století př.n.l. krize mythologie Řešení: Siddhartha Gótama: vše je jen představa Zarathustra: aktuálně probíhá boj dobra a zla proroci Izraele Mluví příroda jazykem matematiky? 5 / 18

15 Vznik matematiky Velký zlom: 6. století př.n.l. krize mythologie Řešení: Siddhartha Gótama: vše je jen představa Zarathustra: aktuálně probíhá boj dobra a zla proroci Izraele: pravda přichází z budoucnosti Mluví příroda jazykem matematiky? 5 / 18

16 Vznik matematiky Velký zlom: 6. století př.n.l. krize mythologie Řešení: Siddhartha Gótama: vše je jen představa Zarathustra: aktuálně probíhá boj dobra a zla proroci Izraele: pravda přichází z budoucnosti Pýthagoras Mluví příroda jazykem matematiky? 5 / 18

17 Vznik matematiky Velký zlom: 6. století př.n.l. krize mythologie Řešení: Siddhartha Gótama: vše je jen představa Zarathustra: aktuálně probíhá boj dobra a zla proroci Izraele: pravda přichází z budoucnosti Pýthagoras: základem jsoucna je číslo Mluví příroda jazykem matematiky? 5 / 18

18 Vznik matematiky Velký zlom: 6. století př.n.l. krize mythologie Řešení: Siddhartha Gótama: vše je jen představa Zarathustra: aktuálně probíhá boj dobra a zla proroci Izraele: pravda přichází z budoucnosti Pýthagoras: základem jsoucna je číslo Mluví příroda jazykem matematiky? 5 / 18

19 Vznik matematiky Velký zlom: 6. století př.n.l. krize mythologie Řešení: Siddhartha Gótama: vše je jen představa Zarathustra: aktuálně probíhá boj dobra a zla proroci Izraele: pravda přichází z budoucnosti Pýthagoras: základem jsoucna je číslo Mluví příroda jazykem matematiky? 5 / 18

20 Co je matematika Mluví příroda jazykem matematiky? 6 / 18

21 Co je matematika µαϑησις µαϑητ ης µαϑηµα µαϑηµατικoς µαϑηµατικα poučení, naučení učedník nauka, to co je k naučení něco mezi επιστηµη (známost, lat. scientia) γνωσις (poznání, lat. cognitio) náležející k nauce (učedník i pojednání) všechny věci, které jsou této naučné povahy Mluví příroda jazykem matematiky? 6 / 18

22 Co je matematika µαϑησις µαϑητ ης µαϑηµα µαϑηµατικoς µαϑηµατικα poučení, naučení učedník nauka, to co je k naučení něco mezi επιστηµη (známost, lat. scientia) γνωσις (poznání, lat. cognitio) náležející k nauce (učedník i pojednání) všechny věci, které jsou této naučné povahy (plurál středního rodu) Mluví příroda jazykem matematiky? 6 / 18

23 Co je matematika µαϑησις µαϑητ ης µαϑηµα µαϑηµατικoς µαϑηµατικα poučení, naučení učedník nauka, to co je k naučení něco mezi επιστηµη (známost, lat. scientia) γνωσις (poznání, lat. cognitio) náležející k nauce (učedník i pojednání) všechny věci, které jsou této naučné povahy (plurál středního rodu) Vlivem pythagorejských učedníků (µαϑηµατικoι) se význam slova matematika zúžil na zabývání se čísly a geometrickými objekty. Mluví příroda jazykem matematiky? 6 / 18

24 Užití matematiky Platón (428/7 348/7) Timaios 28a:,,Nejprve jest podle mého mínění stanoviti tuto rozluku: co jest to, co stále jest, ale vzniku nemá, a co jest to, co stále vzniká, ale nikdy není jsoucí. Nápis nad branou Akademie: Nevstupuj sem nikdo, kdo nejsi geometrem. Mluví příroda jazykem matematiky? 7 / 18

25 Užití matematiky Platón (428/7 348/7) Euklides z Alexandrie (365? 280?) Στoιχεια, Elementa: deduktivní výstavba nauky Mluví příroda jazykem matematiky? 7 / 18

26 Užití matematiky Platón (428/7 348/7) Euklides z Alexandrie (365? 280?) Archimédés (287? 212) použití matematiky v mechanice, válečné stroje Mluví příroda jazykem matematiky? 7 / 18

27 Užití matematiky Platón (428/7 348/7) Euklides z Alexandrie (365? 280?) Archimédés (287? 212) Galileo Galilei ( ) zákony volného pádu Mluví příroda jazykem matematiky? 7 / 18

28 Užití matematiky Platón (428/7 348/7) Euklides z Alexandrie (365? 280?) Archimédés (287? 212) Galileo Galilei ( ) Isaac Newton ( ) Philosophiæ naturalis principia mathematica:,,zajisté přímka a kružnice patří do geometrie, leč i mechaniky se týkají. Mluví příroda jazykem matematiky? 7 / 18

29 Užití matematiky Platón (428/7 348/7) Euklides z Alexandrie (365? 280?) Archimédés (287? 212) Galileo Galilei ( ) Isaac Newton ( ) Fyzika 20. století, teorie relativity a kvantová fyzika Mluví příroda jazykem matematiky? 7 / 18

30 Užití matematiky Platón (428/7 348/7) Euklides z Alexandrie (365? 280?) Archimédés (287? 212) Galileo Galilei ( ) Isaac Newton ( ) Fyzika 20. století, teorie relativity a kvantová fyzika,,jakmile vágní a nesystematické užívání řeči vede k obtížím, musí se fyzik vrátit zpět k matematickému schématu. Mluví příroda jazykem matematiky? 7 / 18

31 Povaha matematiky Matematické objekty existují v,,jiném světě, skutečnějším než,,svět jevů. Matematik je objevuje. Matematické objekty jsou abstrahovány z reálných, jsou to,,prázdné formy. Matematik je vymýšĺı. Mluví příroda jazykem matematiky? 8 / 18

32 Úvod Matematika Matematika ve fyzice Mechanika Termodynamika Matematika v biologii dalšímu čtení Matematika ve fyzice Mluví příroda jazykem matematiky? 9 / 18

33 Mechanika m hmotnost částice x = poloha částice v čase t Mluví příroda jazykem matematiky? 10 / 18

34 Mechanika m hmotnost částice x = poloha částice v čase t rychlost: v = v(t) = t = x(t + t) t hybnost: p = p(t) = mv, p = m v zrychlení: síla: a = a(t) = v(t) t = F = ma = m v t = p t v(t + t) v(t) t Mluví příroda jazykem matematiky? 10 / 18

35 Mechanika m hmotnost částice x = poloha částice v čase t rychlost: v = v(t) = t = x(t + t) t hybnost: p = p(t) = mv, p = m v zrychlení: a = a(t) = v(t) t = v(t + t) v(t) t síla: Newtonovy zákony: F = ma = m v t = p t x t = 1 m p p t = F Mluví příroda jazykem matematiky? 10 / 18

36 Termodynamika N počet částic plynu Mluví příroda jazykem matematiky? 11 / 18

37 Termodynamika N počet částic plynu V objem plynu p tlak plynu T (termodynamická) teplota Mluví příroda jazykem matematiky? 11 / 18

38 Termodynamika N počet částic plynu V objem plynu p tlak plynu T (termodynamická) teplota Stavová rovnice plynu: pv N = kt Mluví příroda jazykem matematiky? 11 / 18

39 Úvod Matematika Matematika ve fyzice Matematika v biologii Růst homogenní populace Růst homogenní populace s omezenými zdroji Interagující populace Strukturovaná populace Matematika v biologii dalšímu čtení Mluví příroda jazykem matematiky? 12 / 18

40 Růst homogenní populace Mluví příroda jazykem matematiky? 13 / 18

41 Růst homogenní populace velikost populace v čase t, který plyne v,,přirozených jednotkách Mluví příroda jazykem matematiky? 13 / 18

42 Růst homogenní populace velikost populace v čase t, který plyne v,,přirozených jednotkách x(t + 1) = uhynuĺı + narození Mluví příroda jazykem matematiky? 13 / 18

43 Růst homogenní populace velikost populace v čase t, který plyne v,,přirozených jednotkách x(t + 1) = uhynuĺı + narození x(t + 1) = d + b d úmrtnost (pravděpodobnost úmrtí během časové jednotky), d 0, 1 b porodnost (průměrný počet potomků jedince), b 0 Mluví příroda jazykem matematiky? 13 / 18

44 Růst homogenní populace velikost populace v čase t, který plyne v,,přirozených jednotkách x(t + 1) = uhynuĺı + narození x(t + 1) = d + b = (1 d + b) d úmrtnost (pravděpodobnost úmrtí během časové jednotky), d 0, 1 b porodnost (průměrný počet potomků jedince), b 0 Mluví příroda jazykem matematiky? 13 / 18

45 Růst homogenní populace velikost populace v čase t, který plyne v,,přirozených jednotkách x(t + 1) = uhynuĺı + narození x(t + 1) = d + b = (1 d + b) d úmrtnost (pravděpodobnost úmrtí během časové jednotky), d 0, 1 b porodnost (průměrný počet potomků jedince), b 0 r = 1 d + b růstový koeficient, r 0 Mluví příroda jazykem matematiky? 13 / 18

46 Růst homogenní populace velikost populace v čase t, který plyne v,,přirozených jednotkách x(t + 1) = uhynuĺı + narození x(t + 1) = d + b = (1 d + b) = r d úmrtnost (pravděpodobnost úmrtí během časové jednotky), d 0, 1 b porodnost (průměrný počet potomků jedince), b 0 r = 1 d + b růstový koeficient, r 0 Mluví příroda jazykem matematiky? 13 / 18

47 Růst homogenní populace velikost populace v čase t, který plyne v,,přirozených jednotkách x(t + 1) = uhynuĺı + narození x(t + 1) = d + b = (1 d + b) = r d úmrtnost (pravděpodobnost úmrtí během časové jednotky), d 0, 1 b porodnost (průměrný počet potomků jedince), b 0 r = 1 d + b růstový koeficient, r 0 x(t + 1) = r Mluví příroda jazykem matematiky? 13 / 18

48 Růst homogenní populace velikost populace v čase t, který plyne v,,přirozených jednotkách x(t + 1) = uhynuĺı + narození x(t + 1) = d + b = (1 d + b) = r d úmrtnost (pravděpodobnost úmrtí během časové jednotky), d 0, 1 b porodnost (průměrný počet potomků jedince), b 0 r = 1 d + b růstový koeficient, r 0 x(t + 1) = r Rekurentní formule pro geometrickou posloupnost Mluví příroda jazykem matematiky? 13 / 18

49 Růst homogenní populace velikost populace v čase t, který plyne v,,přirozených jednotkách x(t + 1) = uhynuĺı + narození x(t + 1) = d + b = (1 d + b) = r d úmrtnost (pravděpodobnost úmrtí během časové jednotky), d 0, 1 b porodnost (průměrný počet potomků jedince), b 0 r = 1 d + b růstový koeficient, r 0 x(0) = x 0 počáteční velikost populace x(t + 1) = r = x 0 r t Mluví příroda jazykem matematiky? 13 / 18

50 Růst homogenní populace velikost populace v čase t, který plyne v,,přirozených jednotkách x(t + 1) = uhynuĺı + narození x(t + 1) = d + b = (1 d + b) = r d úmrtnost (pravděpodobnost úmrtí během časové jednotky), d 0, 1 b porodnost (průměrný počet potomků jedince), b 0 r = 1 d + b růstový koeficient, r 0 x(0) = x 0 počáteční velikost populace x(t + 1) = r r > 1, tj. b > d, r = 1, tj. b = d, r < 1, tj. b < d, = x 0 r t populace roste populace má konstatntní velikost populace vymírá Mluví příroda jazykem matematiky? 13 / 18

51 Růst homogenní populace x(t + 1) = r, x(0) = x 0 Mluví příroda jazykem matematiky? 13 / 18

52 Růst homogenní populace x(t + 1) = r, x(0) = x 0 růstový koeficient r = x(t + 1) Mluví příroda jazykem matematiky? 13 / 18

53 Růst homogenní populace x(t + 1) = r, x(0) = x 0 růstový koeficient r = x(t + 1) závisí na velikosti populace r = r ( ) Mluví příroda jazykem matematiky? 13 / 18

54 Růst homogenní populace s omezenými zdroji r x(t + 1) 1 Mluví příroda jazykem matematiky? 14 / 18

55 Růst homogenní populace s omezenými zdroji Malthus: x(t + 1) = r r x(t + 1) 1 Mluví příroda jazykem matematiky? 14 / 18

56 Růst homogenní populace s omezenými zdroji Malthus: x(t + 1) = r r x(t + 1) Verhulst: x(t + 1) = r (r 1) «1 Mluví příroda jazykem matematiky? 14 / 18

57 Růst homogenní populace s omezenými zdroji Malthus: x(t + 1) = r r x(t + 1) Verhulst: x(t + 1) = r (r 1) «1 Pielou: x(t + 1) = r 1 + (r 1) Mluví příroda jazykem matematiky? 14 / 18

58 Růst homogenní populace s omezenými zdroji Malthus: x(t + 1) = r r x(t + 1) Verhulst: x(t + 1) = r (r 1) «1 Pielou: x(t + 1) = r 1 + (r 1) Ricker: 1 x(t + 1) = r Mluví příroda jazykem matematiky? 14 / 18

59 Růst homogenní populace s omezenými zdroji Malthus: x(t + 1) = r = (r 1) r x(t + 1) Verhulst: x(t + 1) = r (r 1) «1 Pielou: x(t + 1) = r 1 + (r 1) Ricker: 1 x(t + 1) = r Mluví příroda jazykem matematiky? 14 / 18

60 Růst homogenní populace s omezenými zdroji Malthus: x(t + 1) = r = (r 1) r x(t + 1) Verhulst: x(t + 1) = r (r 1) «= (r 1) 1 «1 Pielou: x(t + 1) = r 1 + (r 1) Ricker: 1 x(t + 1) = r Mluví příroda jazykem matematiky? 14 / 18

61 Růst homogenní populace s omezenými zdroji Malthus: x(t + 1) = r = (r 1) r x(t + 1) Verhulst: x(t + 1) = r (r 1) «= (r 1) 1 «1 Pielou: x(t + 1) = = r 1 + (r 1) (r 1) 1 + (r 1) 1 «Ricker: 1 x(t + 1) = r Mluví příroda jazykem matematiky? 14 / 18

62 Růst homogenní populace s omezenými zdroji Malthus: x(t + 1) = r = (r 1) r x(t + 1) Verhulst: x(t + 1) = r (r 1) «= (r 1) 1 «1 Pielou: x(t + 1) = = r 1 r r 1 + (r 1) 1 «x(t + 1) Ricker: 1 x(t + 1) = r Mluví příroda jazykem matematiky? 14 / 18

63 Růst homogenní populace s omezenými zdroji Malthus: x(t + 1) = r = (r 1) r x(t + 1) Verhulst: x(t + 1) = r (r 1) «= (r 1) 1 «1 Pielou: x(t + 1) = = r 1 r r 1 + (r 1) 1 «x(t + 1) Ricker: 1 x(t + 1) = r 1 = r 1 Mluví příroda jazykem matematiky? 14 / 18

64 Růst homogenní populace s omezenými zdroji Malthus: x(t + 1) = r = (r 1) r x(t + 1) Verhulst: x(t + 1) = r (r 1) «= (r 1) 1 «1 Pielou: x(t + 1) = = r 1 r r 1 + (r 1) 1 «x(t + 1) Ricker: 1 x(t + 1) = r 1 = r 1 Mluví příroda jazykem matematiky? 14 / 18

65 Růst homogenní populace s omezenými zdroji r x(t + 1) 1 Mluví příroda jazykem matematiky? 14 / 18

66 Růst homogenní populace s omezenými zdroji r x(t + 1) 1 Základní rovnice: r x(t + 1) = «β 1 + (r 1) «! β r 1 = «β (r 1) = r 1 r 1 «! β x(t + 1) Mluví příroda jazykem matematiky? 14 / 18

67 Růst homogenní populace s omezenými zdroji r x(t + 1) 1 Rovnice se zpožděním: r x(t + 1) = «β x(t 1) 1 + (r 1) Mluví příroda jazykem matematiky? 14 / 18

68 Růst homogenní populace s omezenými zdroji r x(t + 1) 1 ϑ Allee: x(t + 1) = r 4 ( ϑ) 2 1 (x ϑ) Mluví příroda jazykem matematiky? 14 / 18

69 Růst homogenní populace s omezenými zdroji r x(t + 1) 1 ϑ Gompertz: x(t + 1) = r ln r ln Mluví příroda jazykem matematiky? 14 / 18

70 Interagující populace Mluví příroda jazykem matematiky? 15 / 18

71 Interagující populace Růst jedné populace (Rickerův model) 1 x(t + 1) = r, x(0) = x0 Mluví příroda jazykem matematiky? 15 / 18

72 Interagující populace Růst jedné populace (Rickerův model) 1 x(t + 1) = r, x(0) = x0 1 růstový koeficient: r klesá s rostoucí velikostí populace Mluví příroda jazykem matematiky? 15 / 18

73 Interagující populace Růst jedné populace (Rickerův model) 1 x(t + 1) = r, x(0) = x0 1 růstový koeficient: r klesá s rostoucí velikostí populace, y(t) velikosti dvou interagujících populací v čase t Mluví příroda jazykem matematiky? 15 / 18

74 Interagující populace Růst jedné populace (Rickerův model) 1 x(t + 1) = r, x(0) = x0 1 růstový koeficient: r klesá s rostoucí velikostí populace, y(t) velikosti dvou interagujících populací v čase t Lotka-Volterra: 1 α 12 y(t) x(t + 1) = r 1 1, x(0) = x 0 y(t + 1) = r 1 y(t) 2 α 21 2 y(t), y(0) = y 0 Mluví příroda jazykem matematiky? 15 / 18

75 Interagující populace Růst jedné populace (Rickerův model) 1 x(t + 1) = r, x(0) = x0 1 růstový koeficient: r klesá s rostoucí velikostí populace, y(t) velikosti dvou interagujících populací v čase t Lotka-Volterra: 1 α 12 y(t) x(t + 1) = r 1 1, x(0) = x 0 y(t) 1 α 21 y(t + 1) = r 2 2 y(t), y(0) = y 0 α 12 > 0, α 21 > 0 konkurence, kompetice Mluví příroda jazykem matematiky? 15 / 18

76 Interagující populace Růst jedné populace (Rickerův model) 1 x(t + 1) = r, x(0) = x0 1 růstový koeficient: r klesá s rostoucí velikostí populace, y(t) velikosti dvou interagujících populací v čase t Lotka-Volterra: 1 α 12 y(t) x(t + 1) = r 1 1, x(0) = x 0 y(t) 1 α 21 y(t + 1) = r 2 2 y(t), y(0) = y 0 α 12 > 0, α 21 > 0 konkurence, kompetice α 12 < 0, α 21 < 0 mutualismus, symbióza Mluví příroda jazykem matematiky? 15 / 18

77 Interagující populace Růst jedné populace (Rickerův model) 1 x(t + 1) = r, x(0) = x0 1 růstový koeficient: r klesá s rostoucí velikostí populace, y(t) velikosti dvou interagujících populací v čase t Lotka-Volterra: 1 α 12 y(t) x(t + 1) = r 1 1, x(0) = x 0 y(t) 1 α 21 y(t + 1) = r 2 2 y(t), y(0) = y 0 α 12 > 0, α 21 > 0 konkurence, kompetice α 12 < 0, α 21 < 0 mutualismus, symbióza α 12 > 0, α 21 < 0 predace (populace s velikostí x je kořist, s velikostí y je dravec) Mluví příroda jazykem matematiky? 15 / 18

78 Strukturovaná populace Mluví příroda jazykem matematiky? 16 / 18

79 Strukturovaná populace Leonardo Pisánský, Fibonacci ( ): dosi umístil pár kráĺıků na určitém místě, se všech stran ohrazeném zdí, aby poznal, kolik párů kráĺıků se při tom zrodí průběhem roku, jestliže u kráĺıků je tomu tak, že pár kráĺıků přivede na svět měsíčně jeden pár a že kráĺıci počínají rodit ve dvou měsících svého věku. Mluví příroda jazykem matematiky? 16 / 18

80 Strukturovaná populace Leonardo Pisánský, Fibonacci ( ): dosi umístil pár kráĺıků na určitém místě, se všech stran ohrazeném zdí, aby poznal, kolik párů kráĺıků se při tom zrodí průběhem roku, jestliže u kráĺıků je tomu tak, že pár kráĺıků přivede na svět měsíčně jeden pár a že kráĺıci počínají rodit ve dvou měsících svého věku. počet párů kráĺıků v t-tém měsíci Mluví příroda jazykem matematiky? 16 / 18

81 Strukturovaná populace Leonardo Pisánský, Fibonacci ( ): dosi umístil pár kráĺıků na určitém místě, se všech stran ohrazeném zdí, aby poznal, kolik párů kráĺıků se při tom zrodí průběhem roku, jestliže u kráĺıků je tomu tak, že pár kráĺıků přivede na svět měsíčně jeden pár a že kráĺıci počínají rodit ve dvou měsících svého věku. počet párů kráĺıků v t-tém měsíci = x(t 1) + x(t 2) Mluví příroda jazykem matematiky? 16 / 18

82 Strukturovaná populace Leonardo Pisánský, Fibonacci ( ): dosi umístil pár kráĺıků na určitém místě, se všech stran ohrazeném zdí, aby poznal, kolik párů kráĺıků se při tom zrodí průběhem roku, jestliže u kráĺıků je tomu tak, že pár kráĺıků přivede na svět měsíčně jeden pár a že kráĺıci počínají rodit ve dvou měsících svého věku. počet párů kráĺıků v t-tém měsíci = x(t 1) + x(t 2) x(t + 2) = x(t + 1) +, x(0) = 1, x(1) = 2 Mluví příroda jazykem matematiky? 16 / 18

83 Strukturovaná populace Leonardo Pisánský, Fibonacci ( ): dosi umístil pár kráĺıků na určitém místě, se všech stran ohrazeném zdí, aby poznal, kolik párů kráĺıků se při tom zrodí průběhem roku, jestliže u kráĺıků je tomu tak, že pár kráĺıků přivede na svět měsíčně jeden pár a že kráĺıci počínají rodit ve dvou měsících svého věku. počet párů kráĺıků v t-tém měsíci = x(t 1) + x(t 2) x(t + 2) = x(t + 1) +, x(0) = 1, x(1) = 2 t Mluví příroda jazykem matematiky? 16 / 18

84 Strukturovaná populace množství juvenilních,,jedinců v čase t y(t) množství plodných,,jedinců v čase t Mluví příroda jazykem matematiky? 16 / 18

85 Strukturovaná populace množství juvenilních,,jedinců v čase t y(t) množství plodných,,jedinců v čase t σ 1 pravděpodobnost, že juvenilní,,jedinec přežije jedno období σ 2 pravděpodobnost, že plodný,,jedinec přežije jedno období γ pravděpodobnost, že juvenilní,,jedinec během období dospěje b plodnost, tj. průměrný počet potomků plodného,,jedince za jedno období Mluví příroda jazykem matematiky? 16 / 18

86 Strukturovaná populace množství juvenilních,,jedinců v čase t y(t) množství plodných,,jedinců v čase t σ 1 pravděpodobnost, že juvenilní,,jedinec přežije jedno období σ 2 pravděpodobnost, že plodný,,jedinec přežije jedno období γ pravděpodobnost, že juvenilní,,jedinec během období dospěje b plodnost, tj. průměrný počet potomků plodného,,jedince za jedno období x(t + 1) = σ 1 (1 γ) + b y(t) y(t + 1) = σ 1 γ +σ 2 y(t) Mluví příroda jazykem matematiky? 16 / 18

87 Strukturovaná populace množství juvenilních,,jedinců v čase t y(t) množství plodných,,jedinců v čase t σ 1 pravděpodobnost, že juvenilní,,jedinec přežije jedno období σ 2 pravděpodobnost, že plodný,,jedinec přežije jedno období γ pravděpodobnost, že juvenilní,,jedinec během období dospěje b plodnost, tj. průměrný počet potomků plodného,,jedince za jedno období x(t + 1) = σ 1 (1 γ) + b y(t) y(t + 1) = σ 1 γ +σ 2 y(t) x(t + 2) = ( σ 1 (1 γ) + σ 2 ) x(t + 1) + σ1 ( bγ σ2 (1 γ) ) Mluví příroda jazykem matematiky? 16 / 18

88 Strukturovaná populace množství juvenilních,,jedinců v čase t y(t) množství plodných,,jedinců v čase t σ 1 pravděpodobnost, že juvenilní,,jedinec přežije jedno období σ 2 pravděpodobnost, že plodný,,jedinec přežije jedno období γ pravděpodobnost, že juvenilní,,jedinec během období dospěje b plodnost, tj. průměrný počet potomků plodného,,jedince za jedno období x(t + 1) = σ 1 (1 γ) + b y(t) y(t + 1) = σ 1 γ +σ 2 y(t) x(t + 2) = ( σ 1 (1 γ) + σ 2 ) x(t + 1) + σ1 ( bγ σ2 (1 γ) ) Parametry přežití, dospívání ( a) plodnosti mohou ( záviset na velikosti ( populace, ) např. σ 1 = Σ 1 e s 1 +y(t), σ 2 = Σ 2 e s 2 +y(t) ), γ = Γe g +y(t) ( ), b = Be c +y(t) Mluví příroda jazykem matematiky? 16 / 18

89 Úvod Matematika Matematika ve fyzice Matematika v biologii dalšímu čtení dalšímu čtení Mluví příroda jazykem matematiky? 17 / 18

90 John D. Barrow. Pí na nebesích. O počítání, myšlení a bytí. Mladá fronta: Praha, Mario Livio. Je Bůh matematik? Argo/Dokořán: Praha, Ian Stewart. Čísla přírody. Neskutečná skutečnost matematické představivosti. Archa: Bratislava, Ian Stewart. Hraje Bůh kostky? Nová matematika chaosu. Argo/Dokořán: Praha, Milan Mareš. Příběhy matematiky. Stručná historie královny věd. Pistorius&Olšanská: Příbram, Vojtěch Jarošík. Růst a regulace populací. Academia: Praha, 2005 John A. Adam. Mathematics in Nature. Modeling Patterns in the Natural World. Princeton University Press: Princeton&Oxford, Mluví příroda jazykem matematiky? 18 / 18