Microsoft Word - titulna strana_tiraz_Riecan

Veľkosť: px
Začať zobrazovať zo stránky:

Download "Microsoft Word - titulna strana_tiraz_Riecan"

Prepis

1 Miniteória pravdepodobnosti Beloslav Riečan 2015

2 MINITÓRIA PRAVDPODOBNOSTI Autor : Dr.h.c. prof. RNDr. Beloslav Riečan, DrSc. Recenzovali : doc. RNDr. Katarína Janková, CSc. doc. RNDr. Marta Vrábelová, CSc. Vydavateľ: BLIANUM. Vydavateľstvo UMB v Banskej Bystrici dícia: Fakulta prírodných vied Schválila dičná komisia Fakulty prírodných vied UMB v Banskej Bystrici ako vysokoškolský učebný text pre študentov FPV UMB v Banskej Bystrici. Za odbornú a jazykovú stránku tohto textu zodpovedá autor. ISBN

3 Miniteória pravdepodobnosti Beloslav Riečan Kolmogorovova teória pravdepodobnosti založená na teórii množín patrí medzi najvýznamnejšie výsledky matematiky 20. storočia. Pravda, skutočnost, ktorá je jej prednost ou, totiž možnost používat výsledky modernej teórie miery, zvykne niekedy bránit jej širšiemu porozumeniu. Ciel om priložených listov je prispiet k preklenutiu tohto protikladu. Čitatel ovi chceme predložit text predovšetkým zrozumitel ný a nie príliš rozsiahly. Ved ked on pochopí základné myšlienky, l ahko sa sám bude pohybovat v príslušnej literatúre i dobroprajnej spoločnosti. Dovol te ešte pod akovat sa recenzentkám za podporu uvedenej myšlienky a starostlivé prečítanie rukopisu. 1

4 1. Pravdepodobnost Pravdepodobnost je funkcia, ktorá každej množine A z určitého systému množín S prirad uje číslo P (A) [0, 1]. O systéme S sa zvykne predpokladat, že je σ-algebrou. Definícia 1.1. Nech je neprázdna množina, S je systém podmnožín množiny. Povieme, že S je σ-algebra, ak platí (i) S, (ii) A S = A S, (iii) A n S(n = 1, 2,...) = n=1 A n S. Pravdaže, σ-algebra je uzavretá ku všetkým bežným operáciám. Napr. Ak = S. A 1, A 2,...A n S, tak aj n A i = A 1 A 2... A n... S. n=1 Podobne, ak A n S(n = 1, 2,...), tak či ak A, B S. A n = ( A n) S, n=1 n=1 n A i S, i=1 A B = A B S, Definícia 1.2. Nech S je σ-algebra podmnožín množiny, P : S [0, 1]. Povieme, že P je pravdepodobnost, ak platí (i) P () = 1, (ii) P je σ-aditívna, t.j. P ( A n ) = Σ n=1p (A n ) n=1 2

5 kedykol vek A n S(n = 1, 2,...), A n A m = (n m). Azda najjednoduchším príkladom pravdpodobnostného priestoru je konečná množina = {u 1,..., u n } so systémom S všetkých podmnožín množiny a pravdepodobnost ou P definovanou vzt ahom P (A) = carda card, kde carda je počet prvkov množiny A. Podl a predošlého je pravdepodobnost jednoprvkovej množiny A = {u} číslo P (A) = 1 card = 1 n. Črtá sa prirodzené matematické zovšeobecnenie tohto modelu, ked pravdepodobnosti jednotlivých prvkov u 1, u 2,..., u n sú nezáporné čísla p 1, p 2,..., p n také, že Σ n i=1p i = p p n = 1. Špeciálny prípad je ten, ked p i = 1 (i = 1, 2,..., n). V tomto prípade je n prirodzené a efektívne (aj z hl adiska Kolmogorovovej teórie) definovat L ahko vidiet, že P (A) = Σ ui Ap i = Σ{p i ; u i A}. P () = Σ{p i ; x i } = p 1 + p p n = 1. Z axiom 1 a 2 možno odvodit d alšie vlastnosti pravdepodobnosti. Propozícia 1.1. P ( ) = 0. Dôkaz. Položme A n = (n = 1, 2,...). Množiny A n S(n = 1, 2,...) a sú navzájom disjunktné. Preto P ( ) = P ( A n ) = Σ n=1p (A n ) = Σ n=1p ( ) = n=1 = lim n Σ n i=1p ( ) = lim n np ( ). Keby P ( ) > 0, tá limita by bola, čo nie je možné. Preto P ( ) = 0. Propozícia 1.2. Pravdepodobnost je aditívna, teda ak A 1,..., A n S, A i A j = (i j), tak 3

6 n P ( A i ) = Σ n i=1p (A i ). i=1 Dôkaz. Stačí položit A i = pre i n + 1. Potom n P ( A i ) = P ( A i ) = Σ i=1p (A i ) = Σ n i=1p (A i ). i=1 i=1 Propozícia 1.3. Ak A B, A, B S, tak Špeciálne Dôkaz. Zrejme Preto P (B A) = P (B) P (A), P (A) P (B). P (A ) = 1 P (A). A, B A S, A (B A) =. P (B) = P (A (B A)) = P (A) + P (B A) P (A). Ak položíme B =, tak A = A, teda 1 = P () = P (A) + P (A ). Propozícia 1.4. Nech A n S, A n A n+1 (n = 1, 2,...), A = n=1 A n (budeme značit A n A). Potom Dôkaz. Položme P (A) = lim n P (A n ). B 1 = A 1, B 2 = A 2 A 1,..., B n = A n A n 1,... Potom B n S (n = 1, 2,...) B i B j = (i j) a B i = A. i=1 Preto Ale P (A) = Σ i=1p (B i ) = lim n Σ n i=1p (B i ). 4

7 teda n Σ n i=1p (B i ) = P ( B i ) = P (A n ), i=1 P (A) = lim n Σ n i=1p (B i ) = lim n P (A n ). Propozícia 1.5. Nech A n S, A n A n+1 (n = 1, 2.,...), A = n=1 A n (budeme značit A n A). Potom P (A) = lim n P (A n ). Dôkaz. Položme B n = A n(n = 1, 2,...). Potom B n = A n A = B. Preto teda 1 P (A) = P (A ) = P (B) = lim n P (B n ) = = lim n P (A n) = lim n (1 P (A n )) = 1 lim n P (A n ), P (A) = lim n P (A n ). 5

8 2. Náhodná premenná Definícia 2.1. Nech (, S, P ) je pravdepodobnostný priestor, t. j. S je σ- algebra podmnožín množiny, P : S [0, 1] je pravdepodobnost. Náhodná premenná (= náhodná veličina) je taká funkcia ξ : R, že {ω ; ξ(ω) < x} S pre každé x R. Distribučná funkcia F náhodnej premennej ξ je funkcia F : R [0, 1] definovaná rovnost ou F (x) = P ({ω ; ξ(ω) < x}). Príklad. Nech = {ω 1, ω 2, ω 3, ω 4 }, S je systém všetkých podmnožín množiny, P ({ω 1 }) = 1 2, P ({ω 2}) = 1 4, P ({ω 3}) = 1 8. P ({ω 4}) = 1 8. Ďalej definujme ξ({ω 1 }) = 0, ξ({ω 2 }) = 1, ξ({ω 3 }) = 2, ξ({ω 4 }) = 2. Ak x 1, tak {ω; ξ(ω) < x} = {ω; ξ(ω) < 1} =, teda F (x) = P ( ) = 0. Ak 1 < x 0, tak {ω; ξ(ω) < x} = {ω 2 }, teda F (x) = P ({ω 2 }) = 1. Ak 0 < x 2, tak 4 {ω; ξ(ω) < x} = {ω 1, ω 2 }, teda F (x) = P ({ω 1 }) + P ({ω 2 }) = = 3. Ak 2 < x, tak teda F (x) = P () = 1. {ω; ξ() < x} = {ω 1, ω 2, ω 3, ω 4, }, Veta 2.1. Nech F je distribučná funkcia náhodnej premennej ξ. Potom platí (i)f je neklesajúca; (ii)f je spojitá zl ava v každom bode; (iii) lim x F (x) = 1; (iv) lim x F (x) = 0. 6

9 Dôkaz. Ak x 1 < x 2, tak {ω; ξ(ω) < x 1 } {ω; ξ(ω) < x 2 }, teda F (x 1 ) = P ({ω; ξ(ω) < x 1 }) P ({ω; ξ(ω) < x 2 }) = F (x 2 ) a F je neklesajúca. Nech x 0 R je l ubovol ný bod. Nech x n x 0 je l ubovol ná postupnost. Máme dokázat, že lim n F (x n ) = F (x 0 ). Ale Preto A n = {ω; ξ(ω) < x n } A = {ω; ξ(ω) < x 0 }. F (x 0 ) = P (A) = lim n P (A n ) = lim n F (x n ). Ďalej nech (x n ) n je l ubovol ná neklesajúca postupnost taká, že lim n x n =. Potom 1 = P () = P ( {ω; ξ(ω) < x n }) = n=1 = lim n P ({ω; ξ(ω) < x n }) = lim n F (x n ). Preto lim x F (x) = 1. Konečne, nech (x n ) n je nerastúca, lim n x n =. Potom Preto lim x F (x) = 0. 0 = P ( ) = P ( {ω; ξ(ω) < x n }) = n=1 = lim n P ({ω; ξ(ω) < x n }) = lim n F (x n ). Ked že náhodná veličina je zobrazenie ξ : R, môžeme používat aj pojem vzor množiny A R, čo je množina Pri tomto označení ξ 1 (A) = {ω ; ξ(ω) A}. F (x) = P (ξ 1 ((, x))). Ale nielen vzor intervalov typu (, a) patrí do S. Veta 2.2. Nech ξ : R je náhodná veličina, T = {A R; ξ 1 (A) S} Potom T je σ-algebra podmnožín množiny R. 7

10 Dôkaz. V prvom rade ξ 1 (R) = S, teda R T. Ďalej nech A T, t.j. ξ 1 (A) S. Potom ξ 1 (A ) = (ξ 1 (A)) S, teda A T. Konečne, nech A n T (n = 1, 2,...), t.j. ξ 1 (A n ) S (n = 1, 2,...). Potom ξ 1 ( A n ) = ξ 1 (A n ) S, teda n=1 A n T. n=1 n=1 Pravda, takých σ-algebier ako systém T z vety 2.2 je vel a, napr. systém všetkých podmnožín množiny R. Používat budeme prienik všetkých σ-algebier obsahujúcich systém J intervalov typu (, a). Vôbec nad l ubovol ným neprázdnym systémom P podmnožín množiny R možno zostrojit najmenšiu σ-algebru obsahujúcu P. Veta 2.3. Nech P je l ubovol ný neprázdny systém podmnožín množiny R. Potom existuje taká σ-algebra σ(p) P, že σ(p) U pre všetky σ-algebry U P. σ-algebra σ(p) je určená jednoznačne. Dôkaz. Nech σ(p) je prienik všetkých σ-algebier obsahujúcich systém P. Ak A σ(p), P U. Potom A U, teda aj A U. Ked že U je l ubovol ná σ-algebra nad P, je aj A σ(p). Konečne, nech A n σ(p) (n = 1, 2,...), U je σ-algebra obsahujúca P. Potom A n U(n = 1, 2,...), teda aj n=1 A n U. Ked že U je l ubovol ná σ-algebra nad P, platí n=1 A n σ(p). Definícia 2.2. Nech J je systém všetkých intervalov typu (, x), x R. Potom σ-algebru σ(j ) budeme označovat znakom B(R) a množiny patriace do σ-algebry B(R) budeme nazývat Borelove. Veta 2.4. Nech ξ : R je náhodná veličina. Potom pre l ubovol nú množinu A B(R) platí ξ 1 (A) S. Dôkaz. Nech J je systém všetkých intervalov typu (, x), x R, U = {A R; ξ 1 (A) S}. Zrejme U J. Podl a vety 2.2 U je σ-algebra. Preto U σ(j ) = B(R). Ak teda A B(R), tak A U, teda ξ 1 (A) S. 8

11 Pravdaže, Borelove množiny môžeme charakterizovat všelijako. Ukážeme to na príklade. Príklad 2.1. Nech C = {[a, b]; a, b R}. Potom σ(c) = B(R). Máme ukázat dve inklúzie. Nech najprv [a.b] C. Vieme, že (, b+ 1 n ) J B(R) pre každé n N. Preto aj Odtial dostávame, že teda [a, b + 1 n ) = (, b + 1 ) (, a) B(R). n [a, b] = [a, b + 1 n=1 n ) B(R), C B(R). Ked že B(R) je σ-algebra nad C, máme σ(c) B(R). Naopak, nech (, c) J. Potom teda (, c) = [c n, c 1 n=1 n ] σ(c), J σ(c). Ked že σ(c) je σ-algebra, máme B(R) = σ(j ) σ(c). Každá náhodná veličina je charakterizovaná svojou distribučnou funkciou. Navyše aj pravdepodobnost ou na B(R). Veta 2.5. Nech ξ : R je náhodná premenná, F : R [0, 1] jej distribučná funkcia. Potom existuje práve jedna taká pravdepodobnost λ F : B(R) [0, 1], že λ F ([a, b)) = F (b) F (a) pre všetky intervaly [a, b). Dôkaz. 1. xistencia. Definujme pre A B(R), λ F (A) = P (ξ 1 (A)). Máme λ F (R) = P (ξ 1 (R)) = P () = 1. 9

12 Nech A n B(R)(n = 1, 2,...), A i A j = (i j). Potom Ale pre i j λ F ( A n ) = P (ξ 1 (( A n )) = P ( ξ 1 (A n )). n=1 n=1 n=1 ξ 1 (A i ) ξ 1 (A j ) = ξ 1 (A i A j ) = ξ 1 ( ) = 0. Preto Navyše λ F ( A n ) = P ( ξ 1 (A n )) = Σ n=1p (ξ 1 (A n )) = Σ n=1λ F (A n ). n=1 n=1 λ F ([a, b)) = λ F ((, b) (, a)) = = λ F ((, b)) λ F ((, a)) = = P (ξ 1 ((, b)) P (ξ 1 ((, a)) = F (b) F (a). 2. Jednoznačnost Nech µ : B(R) [0, 1] je taká pravdepodobnost, že µ([a, b)) = F (b) F (a) pre všetky intervaly [a, b). Definujme systém množín K = {A B(R); µ(a) = λ F (A)}. Z propozícií 1.4 a 1.5 vyplýva, že systém K je monotónny, t.j. A n K (n = 1, 2,...), A n A = A K, B n K (n = 1, 2,...), B n B = B K. Navyše K R, kde R je pozostáva z konečných zjednotení intervalov typu [a, b) a intervalov typu (, c). Nech M(R) je najmenší monotónny systém nad R. Podl a definície K M(R). Ak ukážeme, že M(R) je algebra, vyplynie z toho, že M(R) je σ-algebra nad J, teda K σ(j ) = B(R). Uvažujme A R pevne a položme K A = {B M(R); A B M(R)}. 10

13 Podl a predpokladu K A R. L ahko vidiet, že K A je monotónny, teda A B M(R) pre všetky B M(R). vezmime teraz pevne B M(R) a L B = {A M(R); A B M(R)}. Podl a predošlého L B R. Ked že L B je monotónny, máme L B M(R), teda pre l ubovol né A M(R) je A L B, teda A B M(R). Ukázali sme, že M(R) je uzavretý vzhl adom na zjednotenia. Podobne sa dá dokázat, že M(R) je uzavretý vzhl adom na rozdiel množín. Okrem toho R = (, n) M(R), n=1 teda M(R) je skutočne σ-algebra, čo sme mali dokázat. 11

14 3. Stredná hodnota Teória pravdepodobnosti má svoj predmet bádania, ktorým je fenomén náhody. Ale Kolmogorovova axiomatika vychádza z teórie miery. Základné jej pojmy sú tri: pravdepodobnost = miera náhodná veličina = meratel ná funkcia stredná hodnota = integrál. Uved me motiváciu strednej hodnoty ako integrálu (ξ) = Nech ξ nadobúda konečný počet hodnôt s pravdepobnost ami teda ξdp. α 1, α 2,..., α n p 1, p 2,..., p n, p i = P ({ω ; ξ(ω) = α i } = P (ξ 1 ({α i })). Potom stredná hodnota (ξ) je vážený priemer Ale (ξ) = Σ n i=1α i p i. Σ n i=1α i p i = Σ n i=1α i P ({ω; ξ(ω) = α i }) = = ξdp. Uvedenú definíciu rozšírime na širšiu triedu integrovatel ných funkcií, a to tak, ako je to v súčasnej matematike zvykom. Totiž, ak strednú hodnotu chápeme ako integrál, potrebujeme je mat k dispozícii pre mohutnejšiu množinu náhodných veličín. Definícia 3.1. Náhodná veličina ξ : R je jednoduchá, ak nadobúda konečný počet hodnôt α 1, α 2,..., α n. 12

15 Jej strednú hodnotu definujeme ako integrál ξdp = Σ n i=1α i P ({ω; ξ(ω) = α i }). Ak je ξ nezáporná náhodná veličina, vezmeme takú postupnost (ξ n ) n, že ξ n ξ. Funkcia ξ je integrovatel ná, ak je lim n ξ ndp konečná. V tom prípade definujeme ξdp = lim ξ n dp. n Konečne, l ubovol ná náhodná veličina ξ : R je integrovatel ná, ak sú integrovatel né funkcie V tom prípade definujeme ξ + = max(ξ, 0), ξ = max( ξ, 0). ξdp = ξ + dp ξ dp. Pravda, aby definícia 3.1 bola korektná, treba dokázat : 1. K l ubovol nej ξ 0 existuje taká neklesajúca postupnost (ξ n ) n jednoduchých funkcií, že ξ = lim n ξ n, ξ n ξ.. 2. Číslo lim n ξ ndp nezávisí od výberu postupnosti (ξ n ) n, ale len od funkcie ξ. Veta 3.1. K l ubovol nej nazápornej náhodnej veličine ξ existuje taká postupnost (ξ n ) n nezáporných jednoduchých funkcií, že ξ n ξ.. Dôkaz. Položme ξ n (ω) = n, ak resp. ak kde j = 1, 2,..., 2 n. ξ(ω) n, ξ n (ω) = j 1 2 n j 1 2 n ξ(ω) < j 2 n, 13

16 Veta 3.2. Nech ξ je nezáporná náhodná veličina, (ξ n ) n, (η n ) n sú také postupnosti jednoduchých nezáporných náhodných veličín, že ξ n ξ, η n ξ. Potom lim ξ n dp = lim η n dp n n V dôkaze vety 3.2 použijeme dve lemy. Lema 3.1. Nech (ξ n ) n je taká postupnost jednoduchých náhodných veličín, že ξ n 0. Potom Potom lim ξ n dp = 0. n Dôkaz. Nech ε > 0 je l ubovol né číslo. Definujme ξ n dp = A n = {ω ; ξ n ε}. ξ n χ An dp + P (A n ) max ξ 1 + ε. ξ n χ A n dp Ale A n. Preto podl a propozície 1.5 lim n P (A n ) = 0. Preto lim ξ n dp ε n pre každé ε > 0, teda lim n ξ ndp = 0. Lema 3.2. Nech η n sú jednoduché, η jednoduchá, η n η. Potom lim η n dp = ηdp. n Dôkaz. Stačí vziat ξ n = η η n a použit lemu 3.1. Dôkaz vety 3.2. Nech 0 ξ n ξ, 0 η n ξ, ξ n, η n sú jednoduché. Pri pevnom m Preto podl a lemy 3.2 min(ξ n, η m ) min(ξ, η m ) = η m. η m dp = n lim min(ξ n, η m )dp 14

17 lim ξ n dp. n Z predošlej nerovnosti vyplýva lim η n dp lim n n ξ n dp. Tým, že sme strednú hodnotu definovali pomocou integrálu, môžeme používat bežné vety z teórie integrovania. Napr. ak ξ, η sú integrovatel né a α, β R, tak (αξ + βη) = α(ξ) + β(η). Teda napr. ak ξ 1,..., ξ n majú tú istú strednú hodnotu (ξ i ) = a a ξ je ich aritmetický priemer ξ = 1 n Σn i=1ξ i, tak ( ξ) = ( 1 n Σn i=1ξ i ) = 1 n (Σn i=1ξ i ) = = 1 n Σn i=1(ξ i ) = 1 na = a. n Trochu menej známa je veta o monotónnej konvergencii: Ak ξ n ξ, ξ n sú integrovatel né a lim n (ξ n ) <, tak ξ je integrovatel ná a (ξ) = lim n (ξ n ). Iná verzia pre nekonečné rady. Ak ξ n 0 sú integrovatel né a Σ n=1(ξ n ) <, tak (Σ n=1ξ n ) = Σ n=1(ξ n ). 15

18 4. Transformácia integrálu Pravda, najbežnejšie pravidlá pre integrovanie sú v euklidovskom priestore. My sme uviedli strednú hodnotu vzhl adom na danú σ-algebru S podmnožín množiny a danú pravdepodobnost P : S [0, 1]. V množine R máme σ-algebru B(R) a na nej (vzhl adom na náhodnú veličinu ξ s distribučnou funkciou F ) pravdepodobnost λ F : B(R) [0, 1]. Vezmeme najprv zloženú funkciu g ξ, kde g : R R. Totiž ak g(x) = x, dostaneme g ξ = ξ, teda (g ξ) = (ξ). Iný užitočný príklad je funkcia g(x) = (x (ξ)) 2, čo vedie k disperzii (g ξ) = ((ξ (ξ)) 2 ) = D(ξ). Jednou cestou môžeme dostat transformačný vzorec pre širokú triedu funkcií g : R R. Definícia 4.1. Funkcia g : R R sa volá borelovská, ak A B(R) = g 1 (A) B(R). Príklad 4.1. Každá spojitá funkcia je borelovská. Totiž, l ahko sa dokáže, že B(R) = σ(o), kde O je systém všetkých otvorených intervalov. Nech g je spojitá a K = {A B(R); g 1 (A) B(R)}. Potom K O, K je σ-algebra, teda K σ(o) = B(R). Veta 4.1. Ak ξ : R je náhodná veličina, g : R R je borelovská funkcia. Potom g ξ : R je integrovatel ná podl a P práve vtedy, ked g : R R je integrovatel ná podl a λ F. Vtedy platí g ξdp = R gdλ F. Príklad 4.2. Ak g(x) = x, tak g ξ = ξ, teda (ξ) = g ξdp = R gdλ F = xdλ F (x). 16

19 Príklad 4.3. Ak g(x) = (x (ξ)) 2, tak g ξ = (ξ (ξ)) 2, teda = D(ξ) = ((ξ (ξ)) 2 ) = (g ξ) = R g(x)dλ F (x) = (x (ξ)) 2 dλ F (x). Dôkaz vety 4.1. Nech g je jednoduchá g = Σ n i=1α i χ Ai, α i R, A i B(R), A i disjunktné. Potom teda g(ξ(ω)) = Σ n i=1α i χ ξ 1 (A i ), g ξdp = Σ n i=1α i P (ξ 1 (A i )) = Σ n i=1α i λ F (A i ) = = g(x)dλ F (x). Ak g 0, g n jednoduché, g n g, tak g n ξ g ξ, teda g ξdp = n lim g n ξdp = lim n g n dλ F = gdλ F. R R Konečne vo všeobecnom prípade teda g = g + g, g ξ = g + ξ g ξ, g ξdp = g + ξdp g ξdp = = R g + dλ F R g dλ F = R gdλ F. Zostáva nám odvodit si spôsob výpočtu strednej hodnoty tak, ako sa realizuje v bežných prípadoch tzv. diskrétnych a spojitých náhodsných veličín. Veta 4.2. Nech ξ : R je náhodná veličina nadobúdajúca hodnoty x 1,..., x n s pravdepodobnost ami p 1,..., p n. Potom (g ξ) = Σ n i=1g(x i )p i. 17

20 Dôkaz. Nech A = {x 1,..., x n }. Pretože λ F (R A) = 0, platí (g ξ) = gdλ F = χ A gdλ F = Potom R = Σ n i=1χ {xi }(x)g(x)dλ F ({x i }) = Σ n i=1g(x i )p i. Veta 4.3. Nech ξ : R je náhodná veličina s hustotou f, t.j. P (ξ < x) = (g ξ) = x R f(t)dt, x R. g(x)f(x)dx. Dôkaz. Nech g = Σ n i=1α i χ Ai. Potom (g ξ) = gdλ F = Σ n i=1α i λ F (A i ) = = R R = Σ n i=1α i R χ Ai (x)f(x)dx = Σ n i=1α i χ Ai (x)f(x)dx = R g(x)f(x)dx. Ak g n sú nezáporné jednoduché, g n g, potom aj g n f gf, teda g(x)f(x)dx = lim g n (x)f(x)dx = R n R = n lim g n dλ F = gdλ F = (g ξ). Konečne pre l ubovol né g R (g ξ) = (g + ξ) (g ξ) = = R g+ (x)f(x)dx R g (x)f(x)dx = R g(x)f(x)dx. Takže skutočne máme v diskrétnom prípade napr. a v spojitom (ξ) = (ξ) = Σ n i=1x i p i, D(ξ) = Σ n i=1(x i (ξ)) 2 p i R xf(x)dx, D(ξ) = 18 (x (ξ)) 2 f(x)dx.

21 λ λi Príklad 4.4. Nech x i = i, p i = e (i = 1, 2,..., ). Potom i! λ i 1 (ξ) = Σ λ λi i=1ie i! = λe λ Σ i=1 (i 1)! = λ. Príklad 4.5. Nech f(x) = 0, ak x 0, f(x) = λe λx, ak x > 0. Potom (ξ) = 0 xλe λx dx = [xλ e λx λ ] λ e λx λ dx = = [ e λx λ ] 0 = 1 λ. Pravdaže, tu sme pracovali so spočítatel nýnm priestorom namiesto s konečným, ale z matematickej stránky ide o prirodzené zvošeobecnenie. Z praktickej stránky máme navyše vhodný príklad na použitie. V prípade disperzie je užitočné umocnit dvojčlen (ξ (ξ)) 2, teda D(ξ) = (ξ 2 2ξ(ξ) + ((ξ)) 2 ) = = (ξ 2 ) 2(ξ)(ξ) + (((ξ)) 2 ) = (ξ 2 ) ((ξ)) 2. 19

22 5. Nezávislost Klasickým príkladom je nezávislé opakovanie pokusov. Napr. ked dvakrát hádžeme kockou a A znamená, že pri prvom hode padne nepárne číslo a B znamená že pri druhom padne šestka. Dvojnásobný hod môžeme opísat pomocou všetkých usporiadaných dvojíc čísel 1, 2,..., 6, Potom teda = {(1, 1), (1, 2),..., (1, 6),..., (6, 6)}. A = {(1, 1), (1, 2),..., (1, 6), (3, 1),..., (3, 6), (5, 1),..., (5, 6)}, B = {(1, 6), (2, 6),..., (6, 6)}, A B = {(1, 6), (3, 6), (5, 6)}, P (A) = carda card = = 3 6 = 1 2, P (B) = cardb card = 6 36 = 1 6, P (A B) = = = = = P (A).P (B). To vedie napr. k iste dobre známemu vzorcu ( ) n P n,k = p k (1 p) n k. k Tu je P nk pravdepodobnost toho, že pri n-násobnom nezávislom opakovaní nejakého pokusu, daný jav, ktorého pravdepodobnost je p, nastane práve k-krát. Definícia 5.1. Náhodné premenné ξ, η sú nezávislé, ak pre l ubovol né A, B B(R) platí P (ξ 1 (A) η 1 (B)) = P (ξ 1 (A)).P (η 1 (B)). Veta 5.1. Náhodné premenné ξ, η sú nezávislé práve vtedy, ak P (ξ 1 ((, x)) η 1 ((, y))) = P (ξ 1 ((, x))).p (η 1 ((, y))) 20

23 pre každé x, y R. Dôkaz. Ak ξ, η sú nezávislé a x, y R, stačí vziat A = (, x), B = (, y). Obrátene, nech platí rovnost uvedená vo vete. Vezmime (, y) pevne a uvažujme systém K = {A B(R); P (ξ 1 (A) η 1 ((, y))) = P (ξ 1 (A)).P (η 1 ((, y)))}. Potom je systém K monotónny a obsahuje systém J, teda P (ξ 1 (A) η 1 ((, y)) = P (ξ 1 (A)).P (η 1 ((, y)) pre všetky A B(R). Položme teraz pre pevné A B(R) L = {B B(R); P (ξ 1 (A) η 1 (B)) = P (ξ 1 (A)).P (η 1 (B))}. Podl a predošlého L J. Ked že L je monotónny, máme L M(J ) = B(R), teda rovnost z definície 5.1 platí pre všetky A, B B(R). a Veta 5.2. Ak ξ, η sú nezávislé a integrovatel né, tak ξη je integrovatel ná Dôkaz. Nech ξ, η sú jednoduché, (ξη) = (ξ)(η). Potom teda ξ = Σ n i=1α i χ Ai, η = Σ m j=1β j χ Bj. ξη = Σ n i=1σ m j=1α i β j χ Ai B j, (ξη) = Σ n i=1σ m j=1α i β j P (A i B j ) = = Σ n i=1σ m j=1α i β j P (A i )P (B j ) = = (Σ n i=1α i P (A i ))(Σ m j=1β j P (B j )) = (ξ)(η). Ak ξ, η sú nezáporné, vezmeme 0 ξ n ξ, 0 η n η, ξ n, η n jednoduché nezávislé (veta 3.1). Potom ξ n η n ξη, teda (ξη) = lim n (ξ n η n ) = lim n (ξ n )(η n ) = = lim n (ξ n ) lim n (η n ) = (ξ)(η). 21

24 Vo všeobecnosti ξ = ξ + ξ, η = η + η. Funkcie ξ +, ξ na jednej strane, resp. η + η na strane druhej, sú po pároch nezávislé. Totiž a podobne η +, η. Preto (ξ + ) 1 (A) = ξ 1 (A [0, )), (ξ ) 1 (A) = ξ 1 (( A) [0, )) (ξη) = ((ξ + ξ )(η + η )) = = (ξ + η + ) (ξ η + ) (ξ η + ) + (ξ η ) = = (ξ + )(η + ) (ξ )(η + ) (ξ )(η + ) + (ξ ) ( η ) = = ((ξ + ) (ξ ))((η + ) (η )). Veta 5.3. Nech ξ, η sú nezávislé s integrovatel ným štvorcom. Potom je taká aj ξ + η a D(ξ + η) = D(ξ) + D(η). Preto Dôkaz. Máme ((ξ + η) 2 ) = (ξ 2 + 2ξη + η 2 ) = = (ξ 2 ) + 2(ξ)(η) + (η 2 ), ((ξ + η)) 2 = ((ξ) + (η)) 2 = = ((ξ)) 2 + 2(ξ)(η) + ((η)) 2. ((ξ + η) 2 ) ((ξ + η)) 2 = = (ξ 2 ) ((ξ)) 2 + (η 2 ) ((η)) 2 = = D(ξ) + D(η). V znení vety 5.3 sme sa nezmienili o existencii strednej hodnoty (ξ i ). Tá vyplýva z existencie (ξ 2 i ). Máme totiž 0 ( ξ 1) 2 = ξ 2 i 2 ξ + 1, ξ 1 2 (ξ2 i + 1). Ked že 1 2 (ξ2 + 1) je integrovatel ná, je integrovatel ná aj ξ. 22

25 6. Odhad momentov Môže sa stat, že meriame nejakú veličinu. Urobíme to niekol kokrát a potom vypočítame aritmetický priemer tých meraní. Matematický model je v konečnej postupnosti nezávislých náhodných veličín s tým istým rozdelením pravdepodobnosti. Veta 6.1. Nech ξ 1,..., ξ n sú náhodné veličiny s tou istou strednou hodnotnou a = (ξ i ), i = 1, 2,..., n.. Nech ξ = 1 n Σn i=1ξ i. Potom Dôkaz. Platí (pozri str. 15) ( ξ) = a. ( ξ) = ( 1 n Σn i=1ξ i ) = 1 n Σn i=1(ξ i ) = = 1 n Σn i=1a = 1.na = a. n Podobne môžeme odhadnút disperziu. Veta 6.2. Nech ξ 1,..., ξ n sú nezávislé náhodné veličiny so strednou hodnotou (ξ i ) = a a disperziou D(ξ i ) = σ 2 (i = i, 2,..., n). Potom Dôkaz. Platí ( 1 n Σn i=1(ξ i a) 2 ) = σ 2. ( 1 n Σn i=1(ξ i a) 2 ) = 1 n Σn i=1d(ξ i ) = = 1 n Σn i=1σ 2 = σ 2 Pravda pri odhade čísla σ 2 strednú hodnotu a nepoznáme. Preto namiesto nej používame aritmetický priemer ξ = 1 n Σn i=1ξ i, teda hl adáme (Σ n i=1(ξ i ξ) 2 ) = 23

26 = (Σ n i=1ξi 2 2 ξσ n i=1ξ i + n ξ 2 ) = = ((Σ n i=1ξi 2 ) n ξ 2 ) = Σ n i=1(ξi 2 ) n( ξ 2 ) = = n(σ 2 + a 2 ) n( ξ 2 ). Zostáva nám vypočítat ( ξ 2 ) = (( 1 n Σn i=1ξ i ) 2 ) = = 1 n 2 (Σn i=1ξ 2 i + Σ i j ξ i ξ j ) = = 1 n 2 (Σn i=1ξ 2 i ) + 1 n 2 Σ i j(ξ i )(ξ j ) = = 1 n 2 n(σ2 + a 2 ) + 1 n 2 n(n 1)a2 = = σ2 n + a2 n + a2 a2 n = Preto = σ2 n + a2. (Σ n i=1(ξ i ξ) 2 ) = nσ 2 + na 2 n σ2 n na2 = = nσ 2 σ 2 = σ 2 (n 1). Dokázali sme teda nasledujúcu vetu: Veta 6.3 Nech ξ 1,..., ξ n sú nezávislé náhodné veličiny s disperziou D(ξ i ) = σ 2 (i = 1,..., n). Potom 1 ( n 1 Σn i=1(ξ i ξ) 2 ) = σ 2. 24

27 7. Intervalový odhad. Videli sme, že aritmetický priemer ξ nameraných hodnôt je dobrý odhad strednej hodnoty a. Pravda, merané hodnoty sa sústred ujú okolo nej, bližšie k nej častejšie, vzdialenejšie od nej zriedkavejšie. Teoretickým modelom je veta 7.1. Spomenutú zákonitost opisuje tzv. Gaussova krivka tradične uvádzaná v tvare y = e x2 2. K uvedenej funkcii sa nedá nájst primitívna funkcia v tvare elementárnej funkcie. Vieme však (Dodatok 1), že e x2 2 dx = 2π. Definícia 7.1. Náhodná premenná ξ má normálne rozdelenie s parametrami a R, σ (0, ), (ξ N(a, σ)), ak má hustotu Ak označíme f(x) = 1 σ (x a) 2 2π e 2σ 2. ϕ(t) = 1 σ t 2 2π e 2, tak f(x) = 1 σ ϕ(x a σ ). Propozícia 7.1. Ak ξ má normálne rozdelenie s parametrami a, σ(ξ N(a, σ)), tak (ξ) = a, D(ξ) = σ 2. Dôkaz. Myšlienku predvedieme na prípade a = 0, 2 = 1. Vo všeobecnom prípade je dôkaz analogický. Tak (ξ) = x 1 2π e x2 2 dx. Ked že funkcia y = xe x2 2 je nepárna a integrovatel ná. máme (ξ) = x 1 2π e x2 2 dx = 0 25

28 Ďalej, pomocou metódy per partes dostávame x 2 e x2 2 dx = x.(xe x2 2 dx) = [x( e x2 2 )] e x2 2 dx = teda D(ξ) = = 0 + 2π = 2π, (x 0) 2 e x 2 2 dx = 1. 2π Z praktických dôvodov je vhodné pracovat s rozdelením N(0, 1). Preto si používaný aritmetický priemer znormujeme. Ved vieme, že ( ξ) = a, D( ξ) = σ 2, pravda, za predpokladu, že ξ 1,..., ξ n sú nezávislé a integrovatel né, (ξ i ) = a, D(ξ i ) = σ 2 (i = 1,..., n). Lemma 7.1. Ak (ξ) = a, D(ξ) = σ 2, σ > 0 a η = 1 (ξ a), tak σ (η) = 0, D(η) = 1. Dôkaz. Máme (η) = 1 (ξ a) = σ = 1 σ ((ξ) a) = 1 (a a) = 0, σ D(η) = ( 1 σ 2 (ξ a)2 ) = = 1 σ 2 ((ξ a)2 ) = 1 σ 2 σ2 = 1. Dôsledok. Ak ξ 1,..., ξ n sú nezávislé s tým istým rozdelením, (ξ) = a, D(ξ) = σ 2, σ > 0, tak 1 ( σ n (Σn i=1ξ i na)) = ( ξ a σ ) = 0, n 1 D( σ n (Σn i=1ξ i na)) = D( ξ a σ ) = 1. n Ohlásená limitná veta (jedna z možností) má teda nasledujúcu formu. 26

29 Veta 7.1 (Centrálna limitná veta). Nech (ξ n ) n=1 je postupnost nezávislých, rovnako rozdelených náhodných premenných so strednou hodnotou (ξ n ) = a) a disperziou D(ξ) = σ 2, σ > 0(n = 1, 2,...). Potom pre každé x R platí lim P ({ω; Σn i=1ξ i (ω) na n σ n < x}) = 1 2π x e t2 2 dt. Dôkaz je uvedený v kapitole 8. Príklad 7.1. Majme n nezávislých meraní ξ 1,...ξ n, δ > 0. Aká je pravdepodobnost toho, že ξ a < δ? Máme P ( ξ a < δ) = P ( ξ a < δ) P ( ξ a < δ) = kde εσ n = δ, teda ε = nδ. Preto = P ( ξ a < εσ n ) P ( ξ a < εσ n ), σ P ( ξ a < δ). = = ε ε ε Ak označíme Φ(ε) = ε 0 ϕ(t)dt, máme 1 ε e t2 1 2 dt e t2 2 dt = 2π 2π ε ϕ(t)dt = 2 ϕ(t)dt. 0 P ( ξ a < δ). = 2Φ(ε) = 2Φ( nδ σ ) = α. Z vety 7.1 vyplýva klasický výsledok spojený s menami Movrea a Laplacea. Ide o náhodnú premennú s binomickým rozdelením k n, ktorá má hodnoty s pravdepodobnost ami 0, 1,..., n p k = P ({ω; k n (ω) = k}) = ( ) n p k (1 p) (n k). k 27

30 Veta 7.2. Nech k n je náhodná premenná s binomickým rozdelením s parametrami n, p. Potom pre všetky x R platí lim P ({ω; k n(ω) np n np(1 p) < x}) = 1 x 2π e t2 2 dt. Dôkaz. Položme ξ n = χ An, kde A n sú nezávislé a P (A n ) = p (n = 1, 2,...). Potom (ξ n ) = 1.p + 0.(1 p) = p = a, D(ξ n ) = (1 p) 2.p + (0 p) 2.(1 p) = p(1 p), teda σ = p(1 p). Navyše Σ n i=1ξ i = k n. Preto k n (ω) np np(1 p) = Σn i=1ξ i na σ. n 28

31 8. Dôkaz centrálnej limitnej vety Jednou z možných techník dôkazu je technika tzv. charakteristických funkcií. Je založená na Taylorovom rozvoji f(x) f(0) + f (0) 1! Dobre známe sú rovnosti x + f (0) 2! e x = 1 + x 1! + x2 2! x f (n) (0) x n +... n! xn n! +..., sinx = x x3 3! + x5 5!... + ( 1)n 1 x 2n 1 (2n 1)! +..., cosx = 1 x2 2! + x4 x2n... + ( 1)n 4! (2n)! +... Niektoré vzt ahy platia aj pre komplexné čísla, teda e ix = 1 + ix 1! + (ix)2 + (ix)3 + (ix)4 + (ix) = 2! 3! 4! 5! = 1 x2 2! + x4 x i(x 4! 3! + x5 5!...) = = cosx + isinx. Definícia 8.1. Ak ξ je náhodná premenná, tak jej charakteristická funkcia ψ : R C je definovaná vzt ahom ψ(t) = (e itξ ) = (costξ) + i(sintξ). za predpokladu, že tá stredná hodnota existuje. Príklad 8.1. Nech ξ má normálne rozdelenie N(0, 1). Potom ψ(t) = e t2 2. Podl a definície a vety 4.3 ψ(t) = (e itξ ) = e itx ϕ(x)dx = e itx 1 2π e x2 2 dx. 29

32 Ale itx x2 2 = 1 2 (x2 2itx) = = 1 2 [(x it)2 (it) 2 ] = 1 2 (x it)2 t2 2. Preto ψ(t) = 1 2π = e t2 2 e (x it)2 2.e t2 2 dx = ϕ(x)dx = e t2 2. V našich úvahách sú dôležité charakterizácie exponenciálnej funkcie, napr. e = lim n (1 + 1 n )n. Vo všeobecnejšom tvare hovorí o tom nasledujúca lema, ktorú budeme potrebovat. Lema 8.1. Ak lim n z n = z, tak lim (1 + z n n n )n = e z. Dôkaz. Použijeme Taylorovu vetu na funkciu f(x) = ln(1 + x), teda f (x) = 1 1+x, f (x) = (1 + x) 2. Ak položíme a = 0, dostaneme kde c leží medzi 0 a x. Preto Vezmime n také, aby zn n ln(1 + x) = f(0) + f (0) 1! = 0 + x x + f (c) x 2 = 2! 1 2(1 + c) 2 x2 ln(1 + z n n ) = z 2 n n z n 2n 2 (1 + c). 2 < q < 1. Potom ln(1 + z 2 n z n n )n = z n 2n(1 + c). 2 30

33 Ak označíme zn2 2n 2 (1+c) 2 = R n, tak teda lim n nr n = 0. Preto nr n 1 2n, teda lim ln(1 + z n n n )n = n lim z n = z, lim (1 + z n n n )n = e z. Veta 8.1. Nech (ξ n ) n=1 je postupnost nezávislých rovnako rozdelených náhodných premenných, (ξ n ) = a, D(ξ n ) = σ 2, σ > 0, ψ n je charakteristická funkcia náhodnej premennej (n = 1, 2,...). Potom Σ n j=1ξ j na σ n lim ψ n(t) = e t n pre každé t R. Dôkaz. Označme η j = ξ j a σ j = 1, 2,... Všetky η j majú rovnakú charakteristickú funkciu g(t) = (e itη j ), j = 1, 2,... Nech ψ n je charakteristická funkcia náhodnej premennej Ked že η j sú nezávislé, platí Σ n j=1ξ j na σ n ψ n ( nt) = (e itσn j=1 η j ) = = (Π n j=1e itη j ) = Π n j=1(g(t)) = g(t) n,

34 teda ψ n (t) = g( t n ) n. Ale, ak F je distribučná funkcia náhodnej premennej η j, tak g(t) = (e itη j ) = e itx df (x), teda g (t) = i g (t) = xe itx df (x), x 2 e itx df (x), g(0) = (1) = 1, g (0) = i(η) = i 1 (ξ a) = 0, σ Podl a Taylorovej vety g (c) = x 2 e icx df (x). g(t) = g(0) + g (0) 1! t + g (c) t 2 = 2! = 1 t2 2 + t2 2 t2 2 x 2 e icx df (x) = 1 t2 2 + ϱ(t). Pritom kde ϱ(t) = 1 t x 2 e icx df (x), 2 lim x 2 e icx df (x) = x 2 df (x) = t 0 = (η 2 ) = 1 σ 2 (ξ2 ) = 1. Preto ϱ(t) lim = 0. t 0 t 2 32

35 Máme ψ n (t) = g( t n ) n = = (1 t2 2n + ϱ( t n )) n = Ale n ) = (1 + t2 2 + nϱ( t n lim z n = lim ( t2 n n 2 ) n = (1 + z n n )n. + t2 ϱ( t n ) t 2 n ) = Preto podl a lemy 8.1 = t2 2 + ϱ(u) t2 lim = t2 u 0 u 2 2. lim ψ n(t) = lim (1 + z n n n n )n = e t 2 2. V Dodatku 2 je dokázané, že ak F n je odpovedajúca distribučná funkcia, tak x lim F n(x) = lim ϕ(t)dt, n n kde Preto z vety 8.1 vyplýva veta 7.1. ϕ(t) = 1 2π e t

36 9. Zákon vel kých čísel Centrálna limitná veta nám dáva cenný nástroj pre odhad strednej hodnoty pomocou aritmetického priemeru. Ked že však máme k dispozícii abstraktný kolmogorovovský aparát, bolo by hriechom nespomenút dve iné, všeobecne známe formulácie. Veta 9.1 (Čebyševova nerovnost ). Nech ξ je náhodná veličina, ktorá má disperziu D(ξ). Potom pre každé ε > 0 platí P ({ω; ξ(ω) (ξ) ε}) D(ξ) ε 2. Dôkaz. Položme B = {ω; ξ(ω) (ξ) ε}. Potom D(ξ) = (ξ (ξ)) 2 dp B (ξ (ξ)) 2 dp ε 2 P (B). Veta 9.2 (pravidlo 3σ). Nech ξ je náhodná veličina s kladnou disperziou D(ξ) = σ 2, σ > 0. Potom P ({ω; ξ(ω) (ξ) 3σ}) 1 9. Dôkaz. Vo vete 9.1 stačí položit ε = 3σ. Veta 9.3 (slabý zákon vel kých čísel). Nech (ξ n ) n=1 je postupnost nezávislých, rovnako rozdelených náhodných veličín majúcich disperziu. Potom pre každé ε > 0 platí lim P ({ω; 1 n n Σn i=1ξ i (ξ 1 ) ε}) = 0. Dôkaz. Vo vete 9.1 treba položit ξ = 1 n Σn i=1ξ i. Potom (ξ) = 1 n Σn i=1(ξ i ) = 1 n n(ξ 1) = (ξ 1 ), D(ξ) = 1 n 2 Σn i=1d(ξ i ) = 1 n 2 nd(ξ 1) = 1 n D(ξ 1). Preto P ({ω; 1 n Σn i=1ξ i (ξ 1 ) ε}) 1 ε 2 1 n D(ξ 1). 34

37 Veta 9.4 (Bernoulliho zákon vel kých čísel). Ak k n je náhodná premenná s binomickým rozdelením s parametrami n N, p [0, 1], (n = 1, 2,...), tak pre l ubovol né ε > 0 platí lim P ({ω; k n(ω) p ε}) = 0. n n Dôkaz. Vo vete 9.3. položme ξ i = χ Ai, kde A 1, A 2,... sú nezávislé udalosti, P (A i ) = p, (i = 1, 2,...). 35

38 10. Podmienená pravdepodobnost Nech priestor má n prvkov, podmnožina A množiny má m prvkov, teda P (A) = m/n. Z tých m prvkov je k takých, že v nich nastane aj B, teda Preto P (B A) = k m = k n m n = P (A B). P (A) P (A B) = P (A).P (B A). Ak sú A, B nezávislé, tak P (A B) = P (A).P (B), pravdepodobnost prieniku sa rovná súčinu pravdepodobností. Vo všeobecnosti pravdepodobnost množiny B závisí od podmienky A. Predpokladajme, že podmienky A sa menia. Dané sú rozkladom Γ množiny Γ = {A 1, A 2,..., A n }, kde P (A i ) > 0 (i = 1, 2,..., n), A i A j = (i j), n i=1 A i =. Rozkladu Γ zodpovedá σ-algebra S 0 = σ(γ) ním vytvorená. Ak nastane A i, tak podmienená pravdepodobnost javu B je P (B A i ). Môžeme teda definovat P (B Γ) = P (B S 0 ) ako reálnu funkciu na, ktorá má na kažom prvku ω z množiny A i hodnotu P (B A i ). To môžeme zapísat ako P (B S 0 )(ω) = Σ n i=1p (B A i )χ Ai (ω). Táto funkcia má dve vlastnosti: 1. Funkcia P (B S 0 ) je S 0 -meratel ná. 2. Pre l ubovol né S 0 platí P (B S 0 )dp = P (B ). Skutočne, ak S 0, tak = i α A i, teda = P (B S 0 )dp = Σ n i=1p (B A i )χ Ai dp = Σ i α χ Σ n i=1p (B A i )χ Ai dp = P (B A i )χ Ai dp = P (B A i ) = Σ i α P (B A i )P ( A i ) = Σ i α P (A i ) = P (A i ) 36

39 = Σ i α P (B A i ) = P (B i α A i ) = P (B ). Ale uvedenými dvoma vlastnost ami možeme definovat podmienenú pravdepodobnost javu vzhl adom na l ubovol nú σ-algebru S 0. Veta Nech (, S, P ) je pravdepodobnostný priestor, S 0 S je σ-algebra, B S. Potom existuje taká S 0 -meratel ná funkcia f : [0, 1], že fdp = P ( B) pre l ubovol nú množinu S 0. Dôkaz. Definujme na S 0 dve miery µ, ν predpisom µ() = P (), ν() = P ( B). Potom ν je absolútne spojitá podl a µ (µ() = 0 = ν() = 0). Preto podl a Radonovej - Nikodymovej vety (Dodatok 3) existuje taká S 0 -meratel ná funkcia f, že P ( B) = ν() = fdµ = fdp pre všetky S 0. Pravdaže, funkcia f nie je určená jednoznačne, ale skoro jednoznačne. Definícia Nech f, g sú meratel né funkcie na priestore (, S, µ). Funkcie f, g sa rovnajú µ skoro všade, ak µ({ω ; f(ω) g(ω)}) = 0. Veta Nech fdµ = gdµ pre všetky S 0. Potom µ-skoro všade f = g. Dôkaz. Položme h = f g. Potom h je S 0 -meratel ná a hdµ = 0 pre všetky S 0. Ak je h nezáporná, jednoduchá, tak h = Σ n i=1α i χ Ai, A i S 0 (i = 1, 2,...), A i A j = (i j). Potom 0 = hdµ = Σ n i=1 α i χ Ai dµ = Σ n i=1α i µ(a i ), teda α i = 0, alebo µ(a i ) = 0. Preto h = 0 skoro všade. Ak je h nezáporná S 0 -meratel ná, vezmeme jednoduché h n, 0 h n h. Ked že 0 h ndµ hdµ = 0, sú h n skoro všade nulové a preto aj h. 37

40 Konečne pre l ubovol nú S 0 -meratel nú h, množiny + = {ω; h(ω) > 0}, = {ω; h(ω) < 0} sú S 0 -meratel né, hdµ = 0, + hdµ = 0, teda h = f g je µ-nulová skoro všade na + aj a preto aj na. To ale znamená, že µ skoro všade f = g. Definícia Nech (, S, P ) je pravdepodobnostný priestor, S 0 S je σ-algebra, B S. Potom P (B S 0 ) : R je l ubovol ná taká S 0 -meratel ná funkcia, že P (B S 0 )dp = P ( B) pre všetky S O. Veta Nech (, S, P ) je pravdepodobnostný priestor, S 0 S je σ-algebra. Potom 1. P -skoro všade P ( S 0 ) = 0, P ( S 0 ) = P -skoro všade 0 P (A S 0 ) 1, A S. 3. Ak A n S(n = 1, 2,...), A i A j = (i j), tak P -skoro všade P ( A n S 0 ) = Σ n=1p (A n S 0 ). n=1 Dôkaz. Prvá vlastnost vyplýva z toho, že 1dP = P () = P ( ), 0dP = 0 = P ( ), teda P -skoro všade P ( S 0) = 1, P ( S o ) = 0. Aby sme dokázali druhú vlastnost, vezmime = {ω ; P (A S 0 ) < 0}. Keby P () > 0, potom by P ( A) = P (A S 0)dP < 0, čo nie je možné. Analogicky sa dokáže druhá nerovnost. Konečne, nech A n S(n = 1, 2,...), A i A j = (i j). Nech S 0. Potom P (A n ) = P (A n S 0 )dp. Preto P (( A n ) ) = P ( (A n )) = n=1 Σ n=1p (A n ) = Σ n=1 = n 1 (Σ n=1p (A n S 0 ))dp. P (A n S 0 )dp = 38

41 11. Podmienená stredná hodnota Podobne ako sme zaviedli podmienenú pravdepodobnost, môžeme zaviest aj podmienenú strednú hodnotu. Tak ako definícii 10.2 predchádzali existenčné vety 10.1 a 10.2, aj teraz uvedieme existenčnú vetu. Veta Nech (, S, P ) je pravdepodobnostný priestor, S 0 S je σ algebra, ξ : R je integrovatel ná náhodná premenná. Potom existuje taká S 0 -meratel ná funkcia f : R, že pre všetky S 0 platí fdp = ξdp. Ak g je iná taká funkcia, tak P -skoro všade g = f. Dôkaz. Definujme na S 0 tri miery µ, ν 1, ν 2 : S 0 [0, 1], µ() = P (), ν 1 () = ξ + dp, ν 2 () = ξ dp. Potom ν 1 je absolútne spojitá podl a µ, ν 2 je absolútne spojitá podl a µ. xistujú teda také S 0 -meratel né funkcie f 1, f 2 : R, že ν 1 () = f 1 dµ, ν 2 () = f 2 dµ. Ak položíme f = f 1 f 2, tak pre každé S 0 platí fdp = = f 1 dp ξ + dp f 2 dp = ν 1 () ν 2 () = ξ dp = ξdp. Ak zároveň gdp = ξdp pre každé S 0, tak gdp = fdp pre každé S 0, teda P -skoro všade f = g podl a vety Definícia Nech (, S 0, P ) je pravdepodobnostný priestor, S 0 S je σ-algebra, ξ : R je integrovatel ná náhodná premenná. Potom podmienená stredná hodnota (ξ S 0 ) : R je taká S 0 -meratel ná funkcia, že (ξ S o )dp = ξdp pre všetky S 0. 39

42 Veta Nech (, S, P ) je pravdepodobnostný priestor, S 0 S je σ-algebra, ξ je nezáporná, integrovatel ná náhodná premenná. Potom (ξ S 0 )dp 0 P - skoro všade. Dôkaz. Nech = {ω; (ξ S 0 )(ω) < 0}. Keby P () > 0, potom by 0 (ξ S 0 )dp < 0, čo je spor. Veta Nech (, S, P ) je pravdepodobnostný priestor, S 0 S, ξ, η integrovatel né náhodné premenné α, β R. Potom P -skoro všade (αξ + βη S 0 )) = α(ξ S 0 ) + β(η S 0 ). Dôkaz. Ked že pre každé S 0 platí (ξ S 0 )dp = ξdp, (η S 0 )dp = pre S 0 platí tiež (αξ + βη)dp = α = α = (ξ S 0 )dp + β ξdp + β ηdp = (η S 0 )dp = (α(ξ S 0 ) + β(η S 0 ))dp. ηdp, Veta Nech (, S, P ) je pravdepodobnostný priestor, S 0 S je σ- algebra, (ξ n ) n=1 postupnost integrovatel ných náhodných premenných, ξ n 0. Potom P -skoro všade (ξ S 0 ) 0. Dôkaz. Pre S 0 χ ξ n 0, teda 0 = lim ξ n dp = lim n n = ( lim n (ξ n S 0 ))dp. (ξ n S 0 )dp = 40

43 Dodatok 1. Laplaceov integrál e x 2 Veta. Pre Laplaceov integrál platí 2 dx = 2π. Dôkaz. Urobíme ho pomocou dvojných integrálov. Nech A je štvorec, A = [ t, t] [ t, t]. Podl a Fubiniho vety platí A e x2 +y 2 t t ( 2 dxdy = dx e x2 2.e y2 t )( 2 dy = e x2 t ) 2 dx e y2 2 dy = t t t t = ( t t e x2 2 dx ) 2. Nech B je kruh so stredom v začiatku a polomerom r. Ak použijeme polárne súradnice, dostaneme B e x2 +y 2 2π r [ ] 2 dxdy = dϕ e ϱ2 2.ϱdϱ = 2π e ϱ2 r r 2 = 2π(1 e 2 ). Ak B je kruh opísaný štvorcu A (má teda polomer t 2) a B b je kruh vpísaný do štvorca A (polomer t), tak B b e x 2 +y 2 2 dxdy = e x2 +y 2 2 dxdy e x 2 +y 2 2 dxdy, A B Preto 2π(1 e t2 2 ) ( t ( t lim t lim t t t t t e x2 2 dx ) 2 2π(1 e t 2 ). e x2 2 dx ) 2 = 2π, e x2 2 dx = 2π. 41

44 Dodatok 2. Distribučné a charakteristické funkcie Ciel om tohto dodatku je dôkaz nasledujúcej vety. Veta. Nech (F n ) n=1 je postupnost distribučných funkcií, ψ n zodpovedajúce charakteristické funkcie, t.j. ψ n (t) = e itx df n (x), t R. Ak lim n ψ n (t) = e t2 2 pre všetky t R, tak x lim F 1 n(x) = e t2 2 dt n 2π pre všetky x R. Dôkazu vety predošleme tri tvrdenia. Propozícia 1. Nech (G k ) k je postupnost distribučných funkcií. Potom existuje z nej vybraná (G kl ) l=1 (označme G kl = H l ) a taká neklesajúca spojitá zl ava funkcia G : R [0, 1], že lim H l(x) = G(x) l pre všetky x R. Dôkaz. Nech Q = (x i ) i=1 množina všetkých racionálnych čísel. Pretože (G k (x 1 )) k=1 je ohraničená, existuje z nej vybraná konvergentná (G (1) k (x 1)) k=1, taká, že existuje lim k G (1) k (x 1) = g(x 1 ). Podobne z postupnosti (G (1) k ) k=1 vyberieme (G (2) k ) k=1, aby existovala lim k G 1 k(x 2 ) = g(x 2 ) Takto dostaneme postupnost postupností G (1) 1, G (1) 2, G (1) 3,... G (2) 1, G (2) 2, G (2) 3,... G (3) 1, G (3) 2, G (3) 3, pričom nasledujúca je vybraná z predchádzajúcej a pre každé i existuje lim k G(i) k = g(x i ). 42

45 Potom postupnost (G (n) n ) n=1 je vybraná z postupnosti (G k ) k=1 a pre každé i. Položme H k = G (k) k, teda lim n G(n) n (x i ) = g(x i ) lim H k(x i ) = g(x i ), i = 1, 2,... k Naostatok stačí položit pre l ubovol né x R G(x) = lim u x sup{g(x i); x i u}. Propozícia 2. Nech (H k ) k=1 je postupnost distribučných funkcií, ψ k zodpovedajúce charakteristické funkcie, t.j. ψ k (t) = eitx dh k (x). Nech lim k ψ k (t) = e t2 2, t R, lim k H k (x) = G(x), x R. Potom G je distribučná funkcia a e itx dg(x) = e t2 2. Preto Dôkaz. Máme u u e t2 2 dt = 0 0 lim ψ k(t)dt = k u 0 lim k u = lim [ e itx dt]dh k (x) = lim k 0 k = e iux 1 dg(x) = ix = e t2 2 u 0 [ = [ u 0 e itx dg(x)]dt. e itx dg(x), t R. Ak v tejto rovnosti položíme t = 0, dostaneme 1 = λ G (R), e itx dh k (x)dt = e iux 1 dh k (x) = ix e itx dt]dg(x) = teda G je distribučná funkcia, ktorej charakteristická funkcia je ψ(t) = e t

46 Propozícia 3. Nech F, G sú také distribučné funkcie, že e itx df (x) = e itx dg(x). Potom F (x) = G(x), x R. Dôkaz. Najprv uvažujme funkciu ψ v tvare ψ(x) = Σ n j=1c j e ixt j. Zrejme ψ(x)df (x) = ψ(x)dg(x). Pretože každá spojitá funkcia f na R nulová mimo nejakého kompaktného intervalu sa dá aproximovat funkciami predošlého typu, máme f(x)df (x) = f(x)dg(x). Ale takými funkciami sa zase dajú aproximovat funkcie typu χ [a,b). Preto Napokon λ F ([a, b)) = χ [a,b) df (x) = χ [a,b) dg(x) = λ G ([a, b)). F (x) = lim n λ F ([x n, x)) = lim n λ G ([x n, x)) = G(x). Dôkaz vety. Nech (G k ) k=1 je l ubovol ná postupnost vybraná z postupnosti (F n ) n=1. Potom podl a propozície 1 existuje taká neklesajúca spojitá funkcia G : R [0, 1] a taká postupnost (H l ) l=1 vybraná z postupnosti (G k ) k=1, že G(x) = lim l H l (x), x R. Podl a propozície 2, funkcia G je distribučná a e itx dg(x) = e t2 2. Definujme F (x) = x 1 2π e t2 2 dt. 44

47 Ale aj e itx df (x) = e t2 2. Pretože z rovnosti charakteristických funkcií vyplýva rovnost funkcií distribučných (propozícia 3), vidíme, že z l ubovol nej postupnosti (F ni ) i=1 vybranej z (F n ) n=1 existuje taká postupnost (F nik ) k vybraná z nej, že x lim F 1 n ik (x) = F (x) = e t2 2 dt k 2π Z toho ale vyplýva, že pre všetky x R. lim F n(x) = F (x) n 45

48 Dodatok 3. Radonova - Nikodymova veta Ak (, S, µ) je pravdepodobnostný priestor, f nezáporná, integrovatel ná funkcia, tak zobrazenie ν : S R definované rovnost ou ν() = fdµ, je miera. Navyše platí implikácia µ() = 0 = ν() = 0. Poslednej implikácii hovoríme, že je ν absolútne spojitá podl a µ. Radonova - Nikodymova veta tvrdí opak. Veta 1 (Radon - Nikodym). Nech (, S, µ) je pravdepodobnostný priestor, ν : S R konečná miera, absolútne spojitá podl a µ (t.j. µ() = 0 = ν() = 0). Potom existuje taká integrovatel ná funkcia f, že pre každé S. ν() = fdµ V dôkaze uvedenej vety sa vyskytujú množinové funkcie, ktoré sú σ- aditívne, no nemusia byt nezáporné. Prototypom je funkcia κ definovaná vzt ahom κ() = fdµ, pričom f nie je nezáporná. Definícia. Nech S je σ-algebra podmnožín množiny. Funkcia κ : S R sa nazýva zovšeobecnená miera, ak pre l ubovol né množiny A n S (n = 1, 2,...), také, že A i A j = (i j) platí κ( A n ) = Σ n=1κ(a n ). n=1 Veta 2 (Hahnov rozklad). Nech κ je zovšeobecnená miera na σ-algebre S podmnožín množiny. Potom existujú také množiny A, B S, že A B =, A B = a κ() 0 pre S, A, 46

49 κ() 0 pre S, B. Dôkaz. Ak je κ nezáporná, stačí vziat A =, B =, ak je κ nekladná zase stačí vziat A =, B =. Rozoberme všeobecný prípad. Množinu C S nazveme zápornou, ak κ() 0 pre všetky S, C. Uvažujme disjunktné systémy záporných množín C, ktoré majú zápornú mieru κ(c) < 0. Nech B je maximálny systém s uvedenou vlastnost ou. Uvážme, že B je spočítatel ný systém. Totiž kde B = B n, n=1 B n = {C S; κ(c) < 1 n }. Pritom B n je dokonca konečný systém, lebo miera κ je konečná. Ked že systém B je spočítatel ný, B = {B 1, B 2,...}, môžeme položit B = i=1b i S. Ak B, tak = i=1 ( B i ), teda κ() = Σ i=1κ( B i ) 0, ked že každá B i je záporná. Definujme A = B. Nech S, A. Máme dokázat, že κ() 0. Nech to nie je pravda. Potom existuje S, A, κ() < 0. Keby množina bola záporná, bol by to spor s maximalitou systému B, lebo B {} = {, B 1, B 2,...} by bol väčší ako maximálny. xistuje teda F S, F, κ(f ) > 0. Podobnou metódou ako sme získali B 1, B 2,..., môžeme získat maximálny disjunktný systém {G 1, G 2,...} podmnožín množiny kladnej miery κ(g i ) > 0 (i = 1, 2,...). Potom G = i=1 G i má kladnú mieru, ale množina G už podmnožinu kladnej miery neobsahuje, teda je záporná. Navyše 0 > κ() = κ( G) + κ(g). Ked že κ(g) > 0, je κ( G) < 0, pričom G je záporná. To je spor s maximalitou systému B, lebo systém { G, B 1, B 2,...} 47

50 je väčší ako maximálny. Vidíme teda, že κ() 0 pre všetky S, A. Ozbrojení takým silným prostriedkom, akým je veta 2, môžeme sa pustit do dôkazu vety 1. Najprv hl adanú funkciu zostrojíme. Nech K = {f; fintegrovatel ná, S : fdµ ν()}. Pretože fdµ ν(), je množina { fdµ; f K} ohraničená, existuje teda a = sup{ fdµ; f K}. Nech (g n ) n=1 je taká postupnost funkcií z K, že a = sup{ g n dµ; n N}. Ak položíme f n = max(g 1,..., g n ), (n = 1, 2,., ), dostaneme takú neklesajúcu postupnost z K, že a = lim f n dµ. n Ak položíme f = lim n f n, tak fdµ = n lim f n dµ = a. Navyše pre l ubovol né S platí fdµ = fχ dµ = lim n f n χ dµ ν(). Teda aj f patrí do K. Vieme, že fdµ ν() pre l ubovol né S. Máme dokázat rovnost. Ak tá rovnost neplatí všade, existuje také F S, že F fdµ < ν(f ). Ak definujeme ν 0 : S R rovnost ou ν 0 () = ν() fdµ, tak ν 0 je miera, ktorá nie je identicky nulová. Pre l ubovol né n N položme ν n () = ν 0 () 1 n µ(). 48

51 Nech A n, B n je Hahnov rozklad vzhl adom na zovšeobenenú mieru ν n, teda ν n () 0, ak A n, ν n () 0, ak B n. Položme Potom teda A = A n, B = B n. n=1 n=1 ν n (B n ) = ν 0 (B n ) 1 n µ(b n) 0, ν 0 (B) ν 0 (B n ) 1 n µ(b n), (n = 1, 2,...) odkial dostávame, že ν 0 (B) = 0. Ale B = B n = ( B n ) = A n = A. n=1 n=1 n=1 Ked že ν 0 nie je identicky nulová, máme ν 0 (A) > 0. xistuje teda také m N, že 0 < ν 0 (A m ) = ν(a m ) dµ. A m Označme A m = C, 1 m = ε, teda ν 0(C ) εµ(c ) 0. Pretože ν je absolútne spojitá podl a µ, je tak ν(c) > 0 ako aj µ(c) > 0. Definujme čo je integrovatel ná funkcia, gdµ = g = f + εχ C, fdµ + εµ(c) > fdµ = a. Ak teda ukážeme, že g K dôjdeme k sporu. Nech teda S je l ubovol né, potom gdµ = fdµ + εµ(c ) fdµ + ν 0 (C ). Ale fdµ + ν 0 (C ) = = C fdµ + ν(c ) fdµ + ν(c ) ν( C) + ν(c ) = ν(). C fdµ = 49

52 Literatúra [1] Janková K., Pázman A.: Pravdepodobnost a štatistika. UK Bratislava [2] Riečan B.: O pravdepodobnosti a miere. Alfa Bratislava [3] Riečan B., Neubrunn T.: Teória miery. VDA Bratislava [4] Zvára K., Štěpán J.: Pravděpodobnost a matematická statistika. Matfyzpres

53 Obsah 1. Pravdepodobnost... str Náhodná premenná... str Stredná hodnota... str Transformácia integrálu... str Nezávislost... str Odhad momentov... str Intervalový odhad... str Dôkaz cetrálnej limitnej vety... str Zákon vel kých čísel... str Podmienená pravdepodobnost... str Podmienená stredná hodnota... str. 39 Dodatok 1. Laplaceov integrál... str. 41 Dodatok 2. Distribučné a charakteristické funkcie...str. 42 Dodatok 3. Radonova - Nikodymova veta...str. 46 Literatúra...str

54 Názov: MINITÓRIA PRAVDPODOBNOSTI Autor: Beloslav Riečan Vydavateľ: BLIANUM. Vydavateľstvo UMB v Banskej Bystrici dícia: Fakulta prírodných vied Vydanie: prvé Počet strán: 52 Formát: CD Rok vydania: 2015 Miesto vydania: Banská Bystrica ISBN

Axióma výberu

Axióma výberu Axióma výberu 29. septembra 2012 Axióma výberu Axióma VIII (Axióma výberu) ( S)[( A S)(A ) ( A S)( B S)(A B A B = ) ( V )( A S)( x)(v A = {x})] Pre každý systém neprázdnych po dvoch disjunktných množín

Podrobnejšie

Teória pravdepodobnosti Zákony velkých císel

Teória pravdepodobnosti Zákony velkých císel 10. Zákony veľkých čísel Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. apríla 2014 1 Zákony veľkých čísel 2 Centrálna limitná veta Zákony veľkých čísel Motivácia

Podrobnejšie

III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) Matematická analýza IV (ÚMV/MAN2d/10) RNDr. Lenka Halčinová, PhD.

III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) Matematická analýza IV (ÚMV/MAN2d/10) RNDr. Lenka Halčinová, PhD. III. Diferenciálny počet funkcie viac premenných (Prezentácia k prednáškam, čast B) (ÚMV/MAN2d/10) lenka.halcinova@upjs.sk 11. apríla 2019 3.3 Derivácia v smere, vzt ah diferenciálu, gradientu a smerovej

Podrobnejšie

Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú in

Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú in Metódy dokazovanie v matematike 1 Základné pojmy Matematika exaktná veda vybudovaná DEDUKTÍVNE ZÁKLADNÉ POJMY základy každej matematickej teórie sú intuitívne jasné a názorné napr. prirodzené čísla, zlomok,

Podrobnejšie

8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1.2 Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru

8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1.2 Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru 8 Cvičenie 1.1 Dokážte, že pre ľubovoľné body X, Y, Z platí X + Y Z = Z + Y X. 1. Dokážte, že pre ľubovoľné body A, B, D, E, F, G afinného priestoru P platí F B = F A, BD = AE, DG = EG F = G. 1.3 Dokážte

Podrobnejšie

POZNÁMKY K PREDNÁŠKAM PRAVDEPODOBNOSŤ A ŠTATISTIKA 1-MAT-180 KAMŠ FMFI Katarína Janková 1.prednáška Teória pravdepodobnosti sa zaoberá modelovaním exp

POZNÁMKY K PREDNÁŠKAM PRAVDEPODOBNOSŤ A ŠTATISTIKA 1-MAT-180 KAMŠ FMFI Katarína Janková 1.prednáška Teória pravdepodobnosti sa zaoberá modelovaním exp POZNÁMKY K PREDNÁŠKAM PRAVDEPODOBNOSŤ A ŠTATISTIKA 1-MAT-180 KAMŠ FMFI Katarína Janková 1.prednáška Teória pravdepodobnosti sa zaoberá modelovaním experimentov náhodnej povahy. V mnohých situáciách opakovanie

Podrobnejšie

Prenosový kanál a jeho kapacita

Prenosový kanál a jeho kapacita Prenosový kanál a jeho kapacita Stanislav Palúch Fakulta riadenia a informatiky, Žilinská univerzita 5. mája 2011 Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Prenosový kanál a

Podrobnejšie

Funkcie viac premenných

Funkcie viac premenných Funkcie viac premenných January 21, 215 Regulárne zobrazenia Nech je zobrazenie X = Φ(T) dané rovnicami: x 1 = ϕ 1 (t 1, t 2,, t n), x 2 = ϕ 2 (t 1, t 2,, t n), x n = ϕ n(t 1, t 2,, t n), a ak majú funkcie

Podrobnejšie

Matematika 2 - cast: Funkcia viac premenných

Matematika 2 - cast: Funkcia viac premenných Matematika 2 časť: Funkcia viac premenných RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Spojitosť

Podrobnejšie

Microsoft Word - Algoritmy a informatika-priesvitky02.doc

Microsoft Word - Algoritmy a informatika-priesvitky02.doc 3. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi základné formálne prostriedky

Podrobnejšie

Microsoft Word - Transparencies03.doc

Microsoft Word - Transparencies03.doc 3. prednáška Teória množín II relácie o operácie nad reláciami o rovnosť o usporiadanosť funkcie o zložená funkcia o inverzná funkcia. Verzia: 20. 3. 2006 Priesvitka: 1 Relácie Definícia. Nech X a Y sú

Podrobnejšie

Neineárne programovanie zimný semester 2018/19 M. Trnovská, KAMŠ, FMFI UK 1

Neineárne programovanie zimný semester 2018/19 M. Trnovská, KAMŠ, FMFI UK 1 Neineárne programovanie zimný semester 2018/19 M. Trnovská, KAMŠ, FMFI UK 1 Metódy riešenia úloh nelineárneho programovania využívajúce Lagrangeovu funkciu 2 Veta: Bod ˆx je optimálne riešenie úlohy (U3)

Podrobnejšie

SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/ ročník MO Riešenia úloh česko-poľsko-slovenského stretnutia 1. Určte všetky trojice (a, b, c) kladných r

SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/ ročník MO Riešenia úloh česko-poľsko-slovenského stretnutia 1. Určte všetky trojice (a, b, c) kladných r SK MATEMATICKÁOLYMPIÁDA skmo.sk 009/010 59. ročník MO Riešenia úloh česko-poľsko-slovenského stretnutia 1. Určte všetky trojice (a, b, c) kladných reálnych čísel, ktoré sú riešením sústavy rovníc a b c

Podrobnejšie

SRPkapitola06_v1.docx

SRPkapitola06_v1.docx Štatistické riadenie procesov Regulačné diagramy na reguláciu porovnávaním 6-1 6 Regulačné diagramy na reguláciu porovnávaním Cieľ kapitoly Po preštudovaní tejto kapitoly budete vedieť: čo sú regulačné

Podrobnejšie

Microsoft Word - 6 Výrazy a vzorce.doc

Microsoft Word - 6 Výrazy a vzorce.doc 6 téma: Výrazy a vzorce I Úlohy na úvod 1 1 Zistite definičný obor výrazu V = 4 Riešte sústavu 15 = 6a + b, = 4a c, 1 = 4a + b 16c Rozložte na súčin výrazy a) b 4 a 18, b) c 5cd 10c d +, c) 6 1 s + z 4

Podrobnejšie

2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom

2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom 2.5. Dotyčnica krivky, dotykový kužeľ. Nech f je krivka a nech P V (f) (t.j. m P (f) 1). Ak m P (f) = r a l je taká priamka, že I P (f, l) > r, potom l nazývame dotyčnicou krivky f v bode P. Pre daný bod

Podrobnejšie

9.1 MOMENTY ZOTRVACNOSTI \(KVADRATICKÉ MOMENTY\) A DEVIACNÝ MOMENT PRIEREZU

9.1 MOMENTY ZOTRVACNOSTI \(KVADRATICKÉ MOMENTY\) A DEVIACNÝ MOMENT PRIEREZU Učebný cieľ kapitoly Po preštudovaní tejto kapitoly by ste mali ovládať: Charakteristiku kvadratických momentov prierezových plôch. Ako je definovaný kvadraticky moment plochy k osi a k pólu. Ako je definovaný

Podrobnejšie

Preco kocka stací? - o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, ked sú velké

Preco kocka stací? - o tom, ako sú rozdelené vlastné hodnoty laplasiánu   v limite, ked sú velké o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, keď sú veľké o tom, ako sú rozdelené vlastné hodnoty laplasiánu v limite, keď sú veľké zaujímavé, ale len pre matematikov... NIE! o tom, ako

Podrobnejšie

4. Pravidlo ret azenia. Často sa stretávame so skupinami premenných, ktoré zložitým spôsobom závisia od iných skupín premenných. Pravidlo ret azenia p

4. Pravidlo ret azenia. Často sa stretávame so skupinami premenných, ktoré zložitým spôsobom závisia od iných skupín premenných. Pravidlo ret azenia p 4. Pravidlo ret azenia. Často sa stretávame so skupinami premenných, ktoré zložitým spôsobom závisia od iných skupín premenných. Pravidlo ret azenia pre funkcie viacerých premenných je univerzálna metóda,

Podrobnejšie

Operačná analýza 2

Operačná analýza 2 Niektoré náhodné procesy majú v praxi veľký význam, pretože sa často vyskytujú, napr.: Poissonov proces proces vzniku a zániku Wienerov proces stacionárne procesy,... Poissonov proces je homogénny Markovov

Podrobnejšie

Poznámky k cvičeniu č. 2

Poznámky k cvičeniu č. 2 Formálne jazyky a automaty (1) Zimný semester 2017/18 Zobrazenia, obrazy a inverzné obrazy Poznámky k cvičeniu č. 2 Peter Kostolányi 4. októbra 2017 Nech f : X Y je zobrazenie. Obraz prvku x X pri zobrazení

Podrobnejšie

Microsoft Word - skripta3b.doc

Microsoft Word - skripta3b.doc 6. Vlastnosti binárnych relácií V tejto časti sa budeme venovať šiestim vlastnostiam binárnych relácií. Najprv si uvedieme ich definíciu. Reláciu R definovanú v množine M nazývame: a ) reflexívnou, ak

Podrobnejšie

Vzorové riešenia úlohy 4.1 Bodovanie Úvod do TI 2010 Dôvod prečo veľa z Vás malo málo bodov bolo to, že ste sa nepokúsili svoje tvrdenia dokázať, prič

Vzorové riešenia úlohy 4.1 Bodovanie Úvod do TI 2010 Dôvod prečo veľa z Vás malo málo bodov bolo to, že ste sa nepokúsili svoje tvrdenia dokázať, prič Vzorové riešenia úlohy 4.1 Bodovanie Úvod do TI 2010 Dôvod prečo veľa z Vás malo málo bodov bolo to, že ste sa nepokúsili svoje tvrdenia dokázať, pričom to je veľmi dôležitá súčasť úlohy. Body sa udeľovali

Podrobnejšie

Informačná a modelová podpora pre kvantifikáciu prvkov daňovej sústavy SR

Informačná a modelová podpora pre kvantifikáciu prvkov daňovej sústavy SR Nelineárne optimalizačné modely a metódy Téma prednášky č. 5 Prof. Ing. Michal Fendek, CSc. Katedra operačného výskumu a ekonometrie Ekonomická univerzita Dolnozemská 1 852 35 Bratislava Označme ako množinu

Podrobnejšie

Matematický model činnosti sekvenčného obvodu 7 MATEMATICKÝ MODEL ČINNOSTI SEKVENČNÉHO OBVODU Konečný automat predstavuje matematický model sekvenčnéh

Matematický model činnosti sekvenčného obvodu 7 MATEMATICKÝ MODEL ČINNOSTI SEKVENČNÉHO OBVODU Konečný automat predstavuje matematický model sekvenčnéh 7 MTEMTICKÝ MODEL ČINNOSTI SEKVENČNÉHO OBVODU Konečný automat predstavuje matematický model sekvenčného obvodu. Konečný automat je usporiadaná pätica = (X, S, Y, δ, λ,) (7.) kde X je konečná neprázdna

Podrobnejšie

Paralelné algoritmy, cast c. 2

Paralelné algoritmy, cast c. 2 Paralelné algoritmy, čast č. 2 František Mráz Kabinet software a výuky informatiky, MFF UK, Praha Paralelné algoritmy, 2009/2010 František Mráz (KSVI MFF UK) Paralelné algoritmy, čast č. 2 Paralelné algoritmy,

Podrobnejšie

Priebeh funkcie

Priebeh funkcie Technická univerzita Košice monika.molnarova@tuke.sk Obsah 1 Monotónnosť funkcie Lokálne extrémy funkcie Globálne (absolútne) extrémy funkcie Konvexnosť a konkávnosť funkcie Monotónnosť funkcie Monotónnosť

Podrobnejšie

Viacnásobne použitelné oblasti spolahlivosti pre viacrozmernú kalibráciu

Viacnásobne použitelné oblasti spolahlivosti pre viacrozmernú kalibráciu Viacnásobne použitel né oblasti spol ahlivosti pre viacrozmernú kalibráciu Martina Chvosteková Ústav merania Slovenská akadémia vied 22. január, Rekreačné zariadenie Rybník, 2018 Obsah 1 Predpoklady, model

Podrobnejšie

Numerické riešenie všeobecnej (klasickej) DMPK rovnice.

Numerické riešenie všeobecnej (klasickej) DMPK rovnice. Numerické riešenie všeobecnej (klasickej) DMPK rovnice. J. Brndiar, R. Derian, P. Markos 11.6.27 1 Úvod Vodivost a transfér matica DMPK vs. zovšeobecnená DMPK rovnica 2 Numerické riešenie Ciel e Predpríprava

Podrobnejšie

1

1 ADM a logika 5. prednáška Sémantické tablá priesvitka 1 Úvodné poznámky Cieľom dnešnej prednášky je moderná sémantická metóda verifikácie skutočnosti, či formula je tautológia alebo kontradikcia: Metóda

Podrobnejšie

Microsoft Word - Final_test_2008.doc

Microsoft Word - Final_test_2008.doc Záverečná písomka z Matematiky pre kog. vedu konaná dňa 3. 1. 008 Príklad 1. Odpovedzte na otázky z výrokovej logiky: (a Ako je definovaná formula (b Aký je rozdiel medzi tautológiou a splniteľnou formulou

Podrobnejšie

Aplikace matematiky- záverečná práca Juraj Bodík 28. septembra 2017 Definície Žena - objekt ohodnotený celým číslom. Každé dve ženy sa dajú porovnat a

Aplikace matematiky- záverečná práca Juraj Bodík 28. septembra 2017 Definície Žena - objekt ohodnotený celým číslom. Každé dve ženy sa dajú porovnat a Aplikace matematiky- záverečná práca Juraj Bodík 28. septembra 207 Definície Žena - objekt ohodnotený celým číslom. aždé dve ženy sa dajú porovnat a rozlíšit, t.j. žiadne dve nemajú rovanké hodnotenie.

Podrobnejšie

PowerPoint Presentation

PowerPoint Presentation Vymenujte základné body fyzikálneho programu ktoré určujú metodológiu fyziky pri štúdiu nejakého fyzikálneho systému Ako vyzerá pohybová rovnica pre predpovedanie budúcnosti častice v mechanike popíšte,

Podrobnejšie

Microsoft Word - Diskusia11.doc

Microsoft Word - Diskusia11.doc Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky MATEMATIKA - 011 sem vlepiť čiarový kód uchádzača Test obsahuje 30 úloh. Na jeho vypracovanie máte 90 minút. Každá úloha spolu

Podrobnejšie

SK MATEMATICKÁOLYMPIÁDA skmo.sk 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh česko-poľsko-slovenského stretnutia 1. Dokážte, že kladné re

SK MATEMATICKÁOLYMPIÁDA skmo.sk 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh česko-poľsko-slovenského stretnutia 1. Dokážte, že kladné re SK MATEMATICKÁOLYMPIÁDA skmo.sk 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh česko-poľsko-slovenského stretnutia 1. Dokážte, že kladné reálne čísla a, b, c spĺňajú rovnicu a 4 + b 4 + c 4

Podrobnejšie

Technická Univerzita Košice Matematicko počítačové modelovanie Vysokoškolská učebnica Košice 2013

Technická Univerzita Košice Matematicko počítačové modelovanie Vysokoškolská učebnica Košice 2013 Technická Univerzita Košice Matematicko počítačové modelovanie Vysokoškolská učebnica Košice 013 Technická Univerzita Košice Matematicko počítačové modelovanie Vysokoškolská učebnica Jozef Džurina Blanka

Podrobnejšie

Metrické konštrukcie elipsy Soňa Kudličková, Alžbeta Mackovová Elipsu, ako regulárnu kužeľosečku, môžeme študovať synteticky (konštrukcie bodov elipsy

Metrické konštrukcie elipsy Soňa Kudličková, Alžbeta Mackovová Elipsu, ako regulárnu kužeľosečku, môžeme študovať synteticky (konštrukcie bodov elipsy Metrické konštrukcie elipsy Soňa Kudličková, Alžbeta Mackovová Elipsu, ako regulárnu kužeľosečku, môžeme študovať synteticky (konštrukcie bodov elipsy) alebo analyticky (výpočet súradníc bodov elipsy).

Podrobnejšie

B5.indd

B5.indd Úvod do limitných prechodov Vladimír Janiš ÚVOD DO LIMITNÝCH PRECHODOV Autor: doc. RNDr. Vladimír Janiš, CSc. Recenzenti: doc. RNDr. Martin Kalina, CSc. RNDr. Pavol Krá, PhD. Vydavate : Belianum. Vydavate

Podrobnejšie

Snímka 1

Snímka 1 Fyzika - prednáška 12 Ciele 5. Fyzikálne polia 5.4 Stacionárne magnetické pole 5.5 Elektromagnetické pole Zopakujte si Fyzikálne pole je definované ako... oblasť v určitom priestore, pričom v každom bode

Podrobnejšie

Jozef Kiseľák Sada úloh na precvičenie VIII. 15. máj 2014 A. (a) (b) 1

Jozef Kiseľák Sada úloh na precvičenie VIII. 15. máj 2014 A. (a) (b) 1 Jozef Kiseľák Sada úloh na precvičenie VIII. 15. máj 2014 A. (a) (b) 1 A Pomocou Charpitovej metódy vyriešte rovnicu. x u x + y u y = u u x y u 2 = xy u u x y 3. u 2 y = u y u 4. u 2 x = u x u u x = B.

Podrobnejšie

Základné stochastické procesy vo financiách

Základné stochastické procesy vo financiách Technická Univerzita v Košiciach Ekonomická fakulta 20. Január 2012 základné charakteristiky zmena hodnoty W t simulácia WIENEROV PROCES základné charakteristiky základné charakteristiky zmena hodnoty

Podrobnejšie

Úvod do lineárnej algebry Monika Molnárová Prednášky 2006

Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 1. 3. marca 2006 2. 10. marca 2006 c RNDr. Monika Molnárová, PhD. Obsah 1 Aritmetické vektory a matice 4 1.1 Aritmetické vektory........................

Podrobnejšie

1. KOMPLEXNÉ ČÍSLA 1. Nájdite výsledok operácie v tvare x+yi, kde x, y R. a i (5 2i)(4 i) b. i(1 + i)(1 i)(1 + 2i)(1 2i) (1 7i) c. (2+3i) a+bi d

1. KOMPLEXNÉ ČÍSLA 1. Nájdite výsledok operácie v tvare x+yi, kde x, y R. a i (5 2i)(4 i) b. i(1 + i)(1 i)(1 + 2i)(1 2i) (1 7i) c. (2+3i) a+bi d KOMPLEXNÉ ČÍSLA Nájdite výsledok operácie v tvare xyi, kde x, y R 7i (5 i)( i) i( i)( i)( i)( i) ( 7i) (i) abi a bi, a, b R i(i) 5i Nájdite x, y R také, e (x y) i(x y) = i (ix y)(x iy) = i y ix x iy i

Podrobnejšie

APROXIMÁCIA BINOMICKÉHO ROZDELENIA NORMÁLNYM A PRÍKLAD JEJ APLIKÁCIE V AKTUÁRSTVE S VYUŽITÍM JAZYKA R Abstrakt Príspevok sa zameriava na prezentáciu l

APROXIMÁCIA BINOMICKÉHO ROZDELENIA NORMÁLNYM A PRÍKLAD JEJ APLIKÁCIE V AKTUÁRSTVE S VYUŽITÍM JAZYKA R Abstrakt Príspevok sa zameriava na prezentáciu l APROXIMÁCIA BINOMICKÉHO ROZDELENIA NORMÁLNYM A PRÍKLAD JEJ APLIKÁCIE V AKTUÁRSTVE S VYUŽITÍM JAZYKA R Abstrakt Príspevok sa zamerava na prezentácu lmtných vet v analýze rzka v nežvotnom postení. Jednoducho

Podrobnejšie

Operačná analýza 2

Operačná analýza 2 Súradnicové sústavy a zobrazenia Súradnicové sústavy v rovine (E 2 ) 1. Karteziánska súradnicová sústava najpoužívanejšia súradnicová sústava; určená začiatkom O, kolmými osami x, y a rovnakými jednotkami

Podrobnejšie

Microsoft Word - Argumentation_presentation.doc

Microsoft Word - Argumentation_presentation.doc ARGUMENTÁCIA V. Kvasnička Ústav aplikovanej informatiky FIIT STU Seminár UI, dňa 21.11.2008 Priesvitka 1 Úvodné poznámky Argumentácia patrí medzi dôležité aspekty ľudskej inteligencie. Integrálnou súčasťou

Podrobnejšie

Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky Niektoré metrické vlastnosti čiastočných náhodných booleovských funkcií Di

Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky Niektoré metrické vlastnosti čiastočných náhodných booleovských funkcií Di Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky Niektoré metrické vlastnosti čiastočných náhodných booleovských funkcií Diplomová práca 2013 Bc. Jakub Husár iii Katedra Informatiky

Podrobnejšie

Zeszyty Naukowe PWSZ, Nowy Sącz 2013 Konštrukcie magických obdĺžnikov Marián Trenkler Faculty of Education, Catholic University in Ružomberok Hrabovsk

Zeszyty Naukowe PWSZ, Nowy Sącz 2013 Konštrukcie magických obdĺžnikov Marián Trenkler Faculty of Education, Catholic University in Ružomberok Hrabovsk Zeszyty Naukowe PWSZ, Nowy Sącz 2013 Konštrukcie magických obdĺžnikov Marián Trenkler Faculty of Education, Catholic University in Ružomberok Hrabovská cesta 1, 034 01 Ružomberok, Slovakia e-mail: marian.trenkler@ku.sk

Podrobnejšie

Informačné technológie

Informačné technológie Informačné technológie Piatok 15.11. 2013 Matúš Péči Barbora Zahradníková Soňa Duchovičová Matúš Gramlička Začiatok/Koniec Z K Vstup/Výstup A, B Načítanie vstupných premenných A, B resp. výstup výstupných

Podrobnejšie

Podpora metód operačného výskumu pri navrhovaní systému liniek doc. RNDr. Štefan PEŠKO, CSc. Katedra matematických metód, Fa

Podpora metód operačného výskumu pri navrhovaní systému liniek doc. RNDr. Štefan PEŠKO, CSc. Katedra matematických metód, Fa Podpora metód operačného výskumu pri navrhovaní systému liniek doc. RNDr. Štefan PEŠKO, CSc. stefan.pesko@fri.uniza.sk Katedra matematických metód, Fakulta riadenia a informatiky, Žilinská univerzita v

Podrobnejšie

Dokonalé a spriatelené čísla 3. kapitola. Pojem hustoty množiny v teorii čísel a dokonalé čísla In: Tibor Šalát (author): Dokonalé a spriatelené čísla

Dokonalé a spriatelené čísla 3. kapitola. Pojem hustoty množiny v teorii čísel a dokonalé čísla In: Tibor Šalát (author): Dokonalé a spriatelené čísla Dokonalé a spriatelené čísla 3. kapitola. Pojem hustoty množiny v teorii čísel a dokonalé čísla In: Tibor Šalát (author): Dokonalé a spriatelené čísla. (Slovak). Praha: Mladá fronta, 1969. pp. 33 46. PersistentofURL:

Podrobnejšie

1

1 1. CHARAKTERISTIKA DIGITÁLNEHO SYSTÉMU A. Charakteristika digitálneho systému Digitálny systém je dynamický systém (vo všeobecnosti) so vstupnými, v čase premennými veličinami, výstupnými premennými veličinami

Podrobnejšie

Výsledky, návody a poznámky π π a. 5 1 ln 2. 6 π (π + 2). Návod: urobit substitúciu x = t a použit vetu 1.2.

Výsledky, návody a poznámky π π a. 5 1 ln 2. 6 π (π + 2). Návod: urobit substitúciu x = t a použit vetu 1.2. Výsledky, návody poznámky π 4. 3 π 3 3. 4. 5 ln. 6 π 7 8 4 (π + ). Návod: urobit substitúiu = t použit vetu.. 9 ln. 3 π Návod: vezmite do úvhy, že + 4 + = + + ( ) urobte substitúiu = t; dostnete dt t +,

Podrobnejšie

Obsah 1 Úvod Predhovor Sylaby a literatúra Grupy a podgrupy 4 2

Obsah 1 Úvod Predhovor Sylaby a literatúra Grupy a podgrupy 4 2 Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 2 Grupy a podgrupy 4 2.1 Základné vlastnosti grúp..............................

Podrobnejšie

1 Priebeµzné písomné zadanie µc.1. Príklady je potrebné vypoµcíta t, napísa t, a odovzda t, na kontrolu na nasledujúcej konzultácii. Nasledujúce integ

1 Priebeµzné písomné zadanie µc.1. Príklady je potrebné vypoµcíta t, napísa t, a odovzda t, na kontrolu na nasledujúcej konzultácii. Nasledujúce integ Priebeµzné písomné zadanie µc.. Príklady je potrebné vypoµcíta t, napísa t, a odovzda t, na kontrolu na nasledujúcej konzultácii. Nasledujúce integrály vypoµcítajte pomocou základných pravidiel derivovania.

Podrobnejšie

Bariéra, rezonančné tunelovanie Peter Markoš, KF FEI STU February 25, 2008 Typeset by FoilTEX

Bariéra, rezonančné tunelovanie Peter Markoš, KF FEI STU February 25, 2008 Typeset by FoilTEX Bariéra, rezonančné tunelovanie Peter Markoš, KF FEI STU February 25, 28 Typeset by FoilTEX Obsah 1. Prechod potenciálovou bariérou, rezonančná transmisia, viazané stavy. 2. Rozptylová matica S a transfer

Podrobnejšie

SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/ ročník Matematickej olympiády Riešenia úloh IMO 1. Určte všetky funkcie f: R R také, že rovnosť f ( x y

SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/ ročník Matematickej olympiády Riešenia úloh IMO 1. Určte všetky funkcie f: R R také, že rovnosť f ( x y SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/2010 59. ročník Matematickej olympiády Riešenia úloh IMO 1. Určte všetky funkcie f: R R také, že rovnosť f ( x y ) = f(x) f(y) platí pre všetky x, y R. (Symbol z označuje

Podrobnejšie

1-INF-155 Algebra 2 Martin Sleziak 10. februára 2013

1-INF-155 Algebra 2 Martin Sleziak 10. februára 2013 1-INF-155 Algebra 2 Martin Sleziak 10. februára 2013 Obsah 1 Úvod 4 1.1 Predhovor...................................... 4 1.2 Sylaby a literatúra................................. 4 2 Grupy a podgrupy 5

Podrobnejšie

Klasická metóda CPM

Klasická metóda CPM Operačná analýza 2-02a Klasická metóda CPM Úvod Je daná úloha časového plánovania U s množinou elementárnych činností E a reálnou funkciou c: E R ktorá každej činnosti A E priradí jej dobu trvania c(a).

Podrobnejšie

Obsah 1 Úvod Predhovor Sylaby a literatúra Základné označenia

Obsah 1 Úvod Predhovor Sylaby a literatúra Základné označenia Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 4 1.3 Základné označenia................................. 4 2 Množiny a zobrazenia

Podrobnejšie

Obsah 1 Úvod Predhovor Sylaby a literatúra Základné označenia

Obsah 1 Úvod Predhovor Sylaby a literatúra Základné označenia Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 4 1.3 Základné označenia................................. 4 2 Množiny a zobrazenia

Podrobnejšie

Slide 1

Slide 1 SÚSTAVA TRANSF. VZŤAHY Plošné, objemové element Polárna Clindrická rcos rsin rcos r sin z z ds rddr dv rddrdz rcossin Sférická r sin sin dv r sin drd d z rcos Viacrozmerné integrál vo fzike Výpočet poloh

Podrobnejšie

Oceňovanie amerických opcií p. 1/17 Oceňovanie amerických opcií Beáta Stehlíková Finančné deriváty, FMFI UK Bratislava

Oceňovanie amerických opcií p. 1/17 Oceňovanie amerických opcií Beáta Stehlíková Finančné deriváty, FMFI UK Bratislava Oceňovanie amerických opcií p. 1/17 Oceňovanie amerických opcií Beáta Stehlíková Finančné deriváty, FMFI UK Bratislava Oceňovanie amerických opcií p. 2/17 Európske a americké typy derivátov Uvažujme put

Podrobnejšie

Paralelné algoritmy, cast c. 3

Paralelné algoritmy, cast c. 3 Paralelné algoritmy, čast č. 3 František Mráz Kabinet software a výuky informatiky, MFF UK, Praha Paralelné algoritmy, 2009/2010 František Mráz (KSVI MFF UK) Paralelné algoritmy, čast č. 3 Paralelné algoritmy,

Podrobnejšie

Operačná analýza 2

Operačná analýza 2 Krivky (čiary) Krivku môžeme definovať: trajektória (dráha) pohybujúceho sa bodu, jednoparametrická sústava bodov charakterizovaná určitou vlastnosťou,... Krivky môžeme deliť z viacerých hľadísk, napr.:

Podrobnejšie

Úvodná prednáška z RaL

Úvodná prednáška z RaL Rozvrhovanie a logistika Základné informácie o predmete Logistika a jej ciele Štruktúra činností výrobnej logistiky Základné skupiny úloh výrobnej logistiky Metódy používané na riešenie úloh výrobnej logistiky

Podrobnejšie

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 Jednotkový koreň(unit roo

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 Jednotkový koreň(unit roo Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Podrobnejšie

Pokrocilé programovanie XI - Diagonalizácia matíc

Pokrocilé programovanie XI - Diagonalizácia matíc Pokročilé programovanie XI Diagonalizácia matíc Peter Markoš Katedra experimentálnej fyziky F2-523 Letný semester 2015/2016 Obsah Fyzikálne príklady: zviazané oscilátory, anizotrópne systémy, kvantová

Podrobnejšie

O možnosti riešenia deformácie zemského povrchu z pohladu metódy konecných prvkov konference pro studenty matematiky

O možnosti riešenia deformácie zemského povrchu z pohladu metódy konecných prvkov konference pro studenty matematiky O možnosti riešenia deformácie zemského povrchu z pohľadu metódy konečných prvkov 19. konference pro studenty matematiky Michal Eliaš ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Katedra matematiky 7. 9. 6. 2011

Podrobnejšie

Model tesnej väzby (TBH) Peter Markoš, KF FEI STU April 21, 2008 Typeset by FoilTEX

Model tesnej väzby (TBH) Peter Markoš, KF FEI STU April 21, 2008 Typeset by FoilTEX Model tesnej väzby (TBH) Peter Markoš, KF FEI STU April 21, 28 Typeset by FoilTEX Obsah 1. TBH: definícia: elektrónový, elektromagnetický 2. Disperzné vzt ahy 3. Spektrum, okrajové podmienky 4. TBH vs.

Podrobnejšie

9. kapitola Maticová algebra II systém lineárnych rovníc, Frobeniova veta, Gaussova eliminačná metóda, determinanty 1. Systém lineárnych rovníc Systém

9. kapitola Maticová algebra II systém lineárnych rovníc, Frobeniova veta, Gaussova eliminačná metóda, determinanty 1. Systém lineárnych rovníc Systém 9. kapitola Maticová algebra II systém lineárnych rovníc, Frobeniova veta, Gaussova eliminačná metóda, determinanty. Systém lineárnych rovníc Systém lineárnych rovníc, ktorý obsahuje m rovníc o n neznámych

Podrobnejšie

Cvičenie 9 Riešené príklady 1. Príklad min f(x 1, x 2 ) = x x x 1 s.t. x 1 80 x 1 + x Pre riešenie úlohy vykonáme nasledujúce kroky

Cvičenie 9 Riešené príklady 1. Príklad min f(x 1, x 2 ) = x x x 1 s.t. x 1 80 x 1 + x Pre riešenie úlohy vykonáme nasledujúce kroky Cvičenie 9 Riešené príklady 1. Príklad min f(x 1, x 2 ) = x 2 1 + x2 2 + 60x 1 s.t. x 1 80 x 1 + x 2 120 Pre riešenie úlohy vykonáme nasledujúce kroky: 1. Najskôr upravíme ohraničenia do tvaru a následne

Podrobnejšie

Analýza sociálnych sietí Geografická lokalizácia krajín EU

Analýza sociálnych sietí  Geografická lokalizácia krajín EU Analýza sociálnych sietí Geografická lokalizácia krajín EU Ekonomická fakulta TU v Košiciach 20. februára 2009 Vzt ahy medzi krajinami - teória grafov Doterajšie riešenia 1 problém farbenia grafov (Francis

Podrobnejšie

Stochastické procesy Beáta Stehlíková Finančné deriváty, SvF STU, LS 2011/2012 Stochastické procesy p.1/29

Stochastické procesy Beáta Stehlíková Finančné deriváty, SvF STU, LS 2011/2012 Stochastické procesy p.1/29 Stochastické procesy Beáta Stehlíková Finančné deriváty, SvF STU, LS 2011/2012 Stochastické procesy p.1/29 I. Wienerov proces, Brownov pohyb Stochastické procesy p.2/29 Stochastické procesy Stochastický

Podrobnejšie

Čísla Nájdite všetky dvojice prirodzených čísiel, ktoré vyhovujú rovnici: 2 ( a+ b) ( a b) + 2b ( a+ 2b) 2b = 49 RIEŠENIE ( ) ( ) ( ) 2 a+ b a

Čísla Nájdite všetky dvojice prirodzených čísiel, ktoré vyhovujú rovnici: 2 ( a+ b) ( a b) + 2b ( a+ 2b) 2b = 49 RIEŠENIE ( ) ( ) ( ) 2 a+ b a Čísla 9 89. Nájdite všetky dvojice prirodzených čísiel, ktoré vyhovujú rovnici: ( a+ b) ( a b) + b ( a+ b) b 9 ( ) ( ) ( ) a+ b a b + b a+ b b 9 ( a b ) + ab + b b 9 a b + ab + b 9 a + ab + b 9 a+ b 9

Podrobnejšie

Microsoft Word - mpicv11.doc

Microsoft Word - mpicv11.doc 1. Vypočítajte obsah plochy ohraničenej súradnicovými osami a grafom funkcie y = x. a) vypočítame priesečníky grafu so súradnicovými osami x=... y = = y =... = x... x= priesečníku grafu funkcie so ; a

Podrobnejšie

A 1

A 1 Matematika A :: Test na skúške (ukážka) :: 05 Daná je funkcia g : y 5 arccos a) Zistite oblasť definície funkcie b) vyjadrite inverznú funkciu g Zistite rovnice asymptot (so smernicou bez smernice) grafu

Podrobnejšie

12Prednaska

12Prednaska propozičná logika vs. logika prvého rádu globálna vs. kompozičná vetviaci sa čas vs. lineárny čas časové body vs. časové intervaly diskrétny čas vs. spojitý čas minulosť vs. budúcnosť distribovanosť vs.

Podrobnejšie

O babirusách

O babirusách VAN HIELE: ROZVOJ GEOMETRICKÉHO MYSLENIA VYRIEŠTE ÚLOHU Máme danú priamku e. Ktoré body ležia vo vzdialenosti 5cm od tejto priamky? Zoraďte žiacke riešenia v dokumente VanHiele_riesenia.pdf podľa úrovne

Podrobnejšie

Úlohy o veľkých číslach 6. Deliteľnosť In: Ivan Korec (author): Úlohy o veľkých číslach. (Slovak). Praha: Mladá fronta, pp Persistent UR

Úlohy o veľkých číslach 6. Deliteľnosť In: Ivan Korec (author): Úlohy o veľkých číslach. (Slovak). Praha: Mladá fronta, pp Persistent UR Úlohy o veľkých číslach 6. Deliteľnosť In: Ivan Korec (author): Úlohy o veľkých číslach. (Slovak). Praha: Mladá fronta, 1988. pp. 68 75. Persistent URL: http://dml.cz/dmlcz/404183 Terms of use: Ivan Korec,

Podrobnejšie

SK MATEMATICKA OLYMPIADA 2010/ ročník MO Riešenia úloh domáceho kola kategórie Z4 1. Doplň do prázdnych políčok čísla od 1 do 7 každé raz tak,

SK MATEMATICKA OLYMPIADA 2010/ ročník MO Riešenia úloh domáceho kola kategórie Z4 1. Doplň do prázdnych políčok čísla od 1 do 7 každé raz tak, SK MATEMATICKA OLYMPIADA 2010/2011 60. ročník MO Riešenia úloh domáceho kola kategórie Z4 1. Doplň do prázdnych políčok čísla od 1 do 7 každé raz tak, aby matematické operácie boli vypočítané správne.

Podrobnejšie

Microsoft Word - Zaver.pisomka_januar2010.doc

Microsoft Word - Zaver.pisomka_januar2010.doc Písomná skúška z predmetu lgebra a diskrétna matematika konaná dňa.. 00. príklad. Dokážte metódou vymenovaním prípadov vlastnosť: Tretie mocniny celých čísel sú reprezentované celými číslami ktoré končia

Podrobnejšie

Microsoft Word - veronika.DOC

Microsoft Word - veronika.DOC Telesá od Veroniky Krauskovej z 3. B Teleso uzavretá obmedzená časť priestoru Mnohosten je časť priestoru, ktorá je ohraničená mnohouholníkmi. Uhlopriečky, ktoré patria do niektorej steny sú stenové uhlopriečky,

Podrobnejšie

Snímka 1

Snímka 1 Fyzika - prednáška 11 Ciele 5. Fyzikálne polia 5.2 Elektrostatické pole 5.3 Jednosmerný elektrický prúd Zopakujte si Fyzikálne pole je definované ako... oblasť v určitom priestore, pričom v každom bode

Podrobnejšie

WP summary

WP summary TESTOVANIE PRAVDEPODOBNOSTNÉHO ROZDELENIA PREDIKČNÝCH CHÝB MARIÁN VÁVRA NETECHNICKÉ ZHRNUTIE 3/2018 Národná banka Slovenska www.nbs.sk Imricha Karvaša 1 813 25 Bratislava research@nbs.sk júl 2018 ISSN

Podrobnejšie

Hranoly (11 hodín) September - 17 hodín Opakovanie - 8. ročník (6 hodín) Mesiac Matematika 9. ročník 5 hodín/týždeň 165 hodín/rok Tematický celok Poče

Hranoly (11 hodín) September - 17 hodín Opakovanie - 8. ročník (6 hodín) Mesiac Matematika 9. ročník 5 hodín/týždeň 165 hodín/rok Tematický celok Poče Hranoly ( hodín) September - 7 hodín Opakovanie - 8. ročník (6 hodín) Mesiac Matematika 9. ročník 5 hodín/týždeň 65 hodín/rok Tematický celok Počet hodín 6 Téma Obsahový štandard Výkonový štandard Opakovanie

Podrobnejšie

MO_pred1

MO_pred1 Modelovanie a optimalizácia Ľudmila Jánošíková Katedra dopravných sietí Fakulta riadenia a informatiky Žilinská univerzita, Žilina Ludmila.Janosikova@fri.uniza.sk 041/5134 220 Modelovanie a optimalizácia

Podrobnejšie

Monday 25 th February, 2013, 11:54 Rozmerová analýza M. Gintner 1.1 Rozmerová analýza ako a prečo to funguje Skúsenost nás učí, že náš svet je poznate

Monday 25 th February, 2013, 11:54 Rozmerová analýza M. Gintner 1.1 Rozmerová analýza ako a prečo to funguje Skúsenost nás učí, že náš svet je poznate Monday 25 th February, 203, :54 Rozmerová analýza M. Gintner. Rozmerová analýza ako a prečo to funguje Skúsenost nás učí, že náš svet je poznatel ný po častiach. Napriek tomu, že si to bežne neuvedomujeme,

Podrobnejšie

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY SYMETRICKÉ POLYNÓMY A ROZKLAD POLYNÓMU NA IREDUCIBILNÉ ČINITELE BAKALÁRSKA

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY SYMETRICKÉ POLYNÓMY A ROZKLAD POLYNÓMU NA IREDUCIBILNÉ ČINITELE BAKALÁRSKA UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY SYMETRICKÉ POLYNÓMY A ROZKLAD POLYNÓMU NA IREDUCIBILNÉ ČINITELE BAKALÁRSKA PRÁCA 2014 BYSTRÍK KUBALA UNIVERZITA KOMENSKÉHO V

Podrobnejšie

Didaktické testy

Didaktické testy Didaktické testy Didaktický test - Nástroj systematického zisťovania výsledkov výuky - Obsahuje prvky, ktoré je možné využiť aj v pedagogickom výskume Druhy didaktických testov A) Didaktické testy podľa

Podrobnejšie

ARMA modely čast 3: zmiešané modely (ARMA) Beáta Stehlíková Časové rady, FMFI UK ARMA modely časť 3: zmiešané modely(arma) p.1/30

ARMA modely čast 3: zmiešané modely (ARMA) Beáta Stehlíková Časové rady, FMFI UK ARMA modely časť 3: zmiešané modely(arma) p.1/30 ARMA modely čast 3: zmiešané modely (ARMA) Beáta Stehlíková Časové rady, FMFI UK ARMA modely časť 3: zmiešané modely(arma) p.1/30 ARMA modely - motivácia I. Odhadneme ACF a PACF pre dáta a nepodobajú sa

Podrobnejšie

Úroveň strojového kódu procesor Intel Pentium Pamäťový operand Adresovanie pamäte Priama nepriama a indexovaná adresa Práca s jednorozmerným poľom Pra

Úroveň strojového kódu procesor Intel Pentium Pamäťový operand Adresovanie pamäte Priama nepriama a indexovaná adresa Práca s jednorozmerným poľom Pra Úroveň strojového kódu procesor Intel Pentium Pamäťový operand Adresovanie pamäte Priama nepriama a indexovaná adresa Práca s jednorozmerným poľom Praktické programovanie assemblerových funkcií Autor:

Podrobnejšie

bakalarska prezentacia.key

bakalarska prezentacia.key Inteligentné vyhľadávanie v systéme na evidenciu skautských družinových hier Richard Dvorský Základné pojmy Generátor družinoviek Inteligentné vyhľadávanie Ako to funguje Základné pojmy Skautská družina

Podrobnejšie

Modelovanie nového produktu na trhu: Bassov model Beáta Stehlíková Cvičenia z časových radov, FMFI UK Modelovanie nového produktu na trhu: Bassov mode

Modelovanie nového produktu na trhu: Bassov model Beáta Stehlíková Cvičenia z časových radov, FMFI UK Modelovanie nového produktu na trhu: Bassov mode Modelovanie nového produktu na trhu: Bassov model Beáta Stehlíková Cvičenia z časových radov, FMFI UK Modelovanie nového produktu na trhu: Bassov model p.1/19 Úvod Frank Bass (1926-2006) - priekopník matematických

Podrobnejšie

Relačné a logické bázy dát

Relačné a logické bázy dát Unifikácia riešenie rovníc v algebre termov Ján Šturc Zima, 2010 Termy a substitúcie Definícia (term): 1. Nech t 0,..., t n -1 sú termy a f je n-árny funkčný symbol, potom aj f(t 0,..., t n -1 ) je term.

Podrobnejšie

MERANIE U a I.doc

MERANIE U a I.doc MERANIE ELEKTRICKÉHO NAPÄTIA A ELEKTRICKÉHO PRÚDU Teoretický úvod: Základnými prístrojmi na meranie elektrických veličín sú ampérmeter na meranie prúdu a voltmeter na meranie napätia. Univerzálne meracie

Podrobnejšie